Cho (C): , một phương trình tiếp tuyến của (C) vuông góc với đường thẳng (d): 3x + 4y – 37 = 0 là:
A. 3x + 4y – 14 = 0.
B. 3x + 4y + 36 = 0.
C. 4x − 3y + 36 = 0
D. 4x − 3y + 14 = 0
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tìm tọa độ tâm I của đường tròn đi qua ba điểm A (0; 4), B (2; 4), C (4; 0).
Cho tam giác ABC có A (−2; 4), B (5; 5), C (6; −2). Đường tròn ngoại tiếp tam giác ABC có phương trình là:
Cho phương trình . Với giá trị nào của m để (1) là phương trình đường tròn có bán kính nhỏ nhất?
Đường tròn (x − a)2 + (y − b)2 = R2 cắt đường thẳng x + y – a – b = 0 theo một dây cung có độ dài bằng bao nhiêu ?
Đường thẳng d: 4x + 3y + m = 0 tiếp xúc với đường tròn (C): x2 + y2 = 1 khi:
Phương trình đường tròn (C) đi qua hai điểm A (0; 1), B (1; 0) và có tâm nằm trên đường thẳng: x + y + 2 = 0 là:
Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) và đường thẳng d: x + y + 1 = 0. Tìm những điểm M thuộc đường thẳng d sao cho từ điểm M kẻ được đến (C) hai tiếp tuyến hợp với nhau góc 900
Cho phương trình x2 + y2 − 8x + 10y + m = 0 (1). Tìm điều kiện của m để (1) là phương trình đường tròn có bán kính bằng 7.
Cho phương trình (1). Có bao nhiêu giá trị m nguyên dương không vượt quá 10 để (1) là phương trình của đường tròn?
Cho đường tròn (C): và đường thẳng (d): x – y – 1 = 0. Một tiếp tuyến của (C) song song với d có phương trình là:
Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường thẳng d1: x + y + 5 = 0, d2: x + 2y – 7 = 0 và tam giác ABC có A (2; 3), trọng tâm là G (2; 0), điểm B thuộc d1 và điểm C thuộc d2. Viết phương trình đường tròn ngoại tiếp tam giác ABC.
Trong mặt phẳng Oxy cho đường thẳng (d): 3x − 4y + 5 = 0 và đường tròn (C): . Tìm những điểm M thuộc (C) và N thuộc (d) sao cho MN có độ dài nhỏ nhất.
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): . Số phương trình tiếp tuyến của (C), biết góc giữa tiếp tuyến này và trục hoành bằng 600
Cho phương trình (1). Tìm điều kiện của m để (1) là phương trình đường tròn?