Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(0;2), B(-2;-2) và C(4;-2). Gọi H là chân đường cao kẻ từ B; M và N lần lượt là trung điểm của các cạnh AB và BC. Viết phương trình đường tròn đi qua các điểm H, M, N.
(Xem hình 3.18)
Ta có: M(-1; 0), N(1; -2), AC = (4; -4)
Giả sử H(x;y). Ta có :
Giả sử phương trình đường tròn cần tìm là:
x2 + y2 + 2ax + 2by + c = 0
Thay tọa độ của M, N, H vào (1) ta có hệ điều kiện :
Vậy phương trình đường tròn cần tìm là: x2 + y2 - x + y - 2 = 0
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho phương trình x2 + y2 - 2mx - 4(m - 2)y + 6 - m = 0
a) Tìm điều kiện của m để (1) là phương tình của đường tròn, ta kí hiệu là (Cm).
b) Tìm tập hợp các tâm của (Cm) khi m thay đổi.
Đường thẳng đi qua hai điểm A(1;1), B(2;2) có phương trình tham số là:
Đường thẳng đi qua điểm M(1;2) và song song với đường thẳng d: 4x + 2y + 1 = 0 có phương trình tổng quát là:
Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của hai đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng Δ: x + y - 5 = 0. Viết phương trình đường thẳng AB.
Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng: d1: x - y = 0 và d2 = 2x + y - 1 = 0. Tìm tọa độ các đỉnh hình vuông ABCD biết rằng đỉnh A thuộc d1, đỉnh C thuộc d2 và các đỉnh B, D thuộc trục hoành.
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có tâm I(1/2; 0) phương trình đường thẳng AB là : x - 2y + 2 = 0 và AB = 2AD. Tìm tọa độ các đỉnh A, B, C, D biết rằng đỉnh A có hoành độ âm.
Cho ba điểm A(1; 4), B(3; 2), C(5; 4). Tọa độ tâm đường tròn ngoại tiếp tam giác ABC là:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 - 2x - 2y + 1 = 0 và đường thẳng d: x - y + 3 = 0. Tìm tọa độ điểm M nằm trên d sao cho đường tròn tâm M có bán kính gấp đôi bán kính đường tròn (C) và tiếp xúc ngoài với đường tròn (C).
Đường tròn (C) có tâm là gốc O(0;0) và tiếp xúc với đường thẳng Δ: 8x + 6y + 100 = 0. Bán kính của đường tròn (C) là:
Trong mặt phẳng Oxy cho tam giác ABC cân tại A có A(-1;4) và các đỉnh B, C thuộc đường thẳng Δ: x - y - 4 = 0.
a) Tính khoảng cách từ A đến đường thẳng Δ.
b) Xác định tọa độ các điểm B và C, biết diện tích tam giác ABC bằng 18.
Trong mặt phẳng tọa độ Oxy, cho điểm A(2;2) và các đường thẳng
• d1: x + y - 2 = 0
• d2: x + y - 8 = 0.
Tìm tọa độ các điểm B và C lần lượt thuộc d1 và d2 sao cho tam giác ABC vuông cân tại A.
Cho hai điểm A(3;0), B(0;4). Đường tròn nội tiếp tam giác OAB có phương trình là:
Hình chiếu vuông góc của điểm M(1;4) xuống đường thẳng Δ: x - 2y + 2 = 0 có tọa độ là:
Cho hai đường tròn:
(C1): x2 + y2 + 2x - 6y + 6 = 0
(C2): x2 + y2 - 4x + 2y - 4 = 0
Tìm khẳng định đúng trong các khẳng định sau:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.