Cho A = (−20; 20) và B = [2m – 4; 2m + 2) (m là tham số). Có tất cả bao nhiêu giá trị nguyên dương của tham số m để B Ì A?
A. 9
B. 17
C. 8
D. 10
Đáp án đúng là: A
Để B Ì A thì −20 < 2m – 4 < 2m +2 ≤ 20 Û
Các giá trị nguyên dương của m là 1; 2; 3; 4; 5; 6; 7; 8 ;9
Có 9 giá trị m thỏa mãn bài toán.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một lớp có 45 học sinh. Mỗi em đều đăng ký chơi ít nhất một trong hai môn: bóng đá và bóng chuyền. Có 35 em đăng ký môn bóng đá, 15 em đăng ký môn bóng chuyền. Hỏi có bao nhiêu em đăng ký cả hai môn bóng đá và bóng chuyền?
Cho hai tập hợp A = [−1; 3), B = [a; a + 3]. Với giá trị nào của a thì A ∩ B = ∅?
Cho A = (−1; 5) và B = (m; m+3]. Tìm tất cả các giá trị của m để A ∩ B ≠ ∅ ?
Xác định tập hợp A = {x ∈| x2 − 2x – 3 = 0} bằng cách liệt kê các phần tử
Một nhóm các học sinh lớp 10H giỏi Toán hoặc giỏi Văn. Trong đó, có 5 bạn giỏi Toán; 7 bạn giỏi Văn và 2 bạn giỏi cả hai môn. Hỏi nhóm đó có bao nhiêu học sinh?
Cho tập A = (−∞; 1] và B = (m; +∞). Tất cả các giá trị của m để A ∩ B ≠ ∅ là:
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp
A = {x ∈| −3 ≤ x ≤ 5}.
Cho tập hợp A = [−2; 10] và B = { x ∈: 2m ≤ x < m+7}. Số các giá trị nguyên của m để B Ì A là: