Tổng hệ số của x3 và x2 trong khai triển (1 + 2x)4 là :
Hướng dẫn giải
Đáp án đúng là: B
Ta có: (a + b)4 = a4 + 4a3b + 5a2b2 + 4ab3 + b4.
Do đó (1 + 2x)4 = 14 + 4.13.(2x) + 5.12.(2x)2 + 4.1.(2x)3 + (2x)4
= 1 + 8x + 20x2 + 24x3 + 16x4
Suy ra hệ số của x3 là 24 và hệ số của x2 là 20. Khi đó ta có tổng hai hệ số bằng 24 + 20 = 44.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong khai triển nhị thức (a + 2)n - 5 (n \( \in \) ℕ). Có tất cả 6 số hạng. Vậy n bằng
Cho số tự nhiên n thỏa mãn \[A_n^2 + 2C_n^n = 22\]. Hệ số của số hạng chứa x3 trong khai triển của biểu thức (3x – 4)n bằng
Hệ số của x2 trong khai triển (2 – 3x)3 là k. Nhận xét nào sau đây đúng về k ?
Với n là số nguyên dương thỏa mãn \(3C_{n + 1}^3 + A_n^2 = 14\left( {n - 1} \right)\). Trong khai triển biểu thức (x3 + 2y2)n, gọi Tk là số hạng mà tổng số mũ của x và y của số hạng đó bằng 11. Hệ số của Tk là
Tính giá trị biểu thức \(T = C_4^0 + \frac{1}{2}C_4^1 + \frac{1}{4}C_4^2 + \frac{1}{8}C_4^3 + \frac{1}{{16}}C_4^4\)
Bài 4. Nhị thức Newton