Biểu thức f(x) = (m2 + 2)x2 – 2(m – 2)x + 2 luôn nhận giá trị dương khi và chỉ khi:
A. m ≤ – 4 hoặc m ≥ 0;
B. m < – 4 hoặc m > 0;
C. – 4 < m < 0;
D. m < 0 hoặc m > 4.
Đáp án đúng là: B
Ta có (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ\[ \Leftrightarrow \left\{ \begin{array}{l}a > 0\\{\Delta ^/} < 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 2 > 0\\ - {m^2} - 4m < 0\end{array} \right.\]
Ta có m2 + 2 > 0 với mọi m nên để (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \) ℝ thì – m2 – 4m < 0
Xét f(m) = – m2 – 4m có ∆ = 16 > 0, hai nghiệm phân biệt là m = 0; m = – 4 và a = – 1 < 0
Ta có bảng xét dấu
m |
– ∞ –4 0 + ∞ |
f(m) |
– 0 + 0 – |
Vậy để f(m) < 0 khi m < – 4 hoặc m > 0.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu giá trị nguyên của m để bất phương trình x2 + 3mx2 + 4mx + 4 ≥ 0 với mọi x \( \in \) ℝ.
Gọi x là nghiệm của phương trình
\(\sqrt {3x - 2} + \sqrt {x - 1} = 4x - 9 + 2\sqrt {3{x^2} - 5x + 2} \)
Tính giá trị của biểu thức A = x2 – 3x + 15
Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) ≤ 0 với \[\forall x \in \mathbb{R}\].
Với x thuộc tập hợp nào dưới đây thì f(x) = 2x2 – 7x – 15 không âm?
Số nghiệm của phương trình 4x2 – 12x + 5\(\sqrt {4{x^2} - 12x} \) = 0
Tổng các nghiệm của phương trình \(\sqrt {x + 3} + \sqrt {6 - x} = 3 + \sqrt {(x + 3)(6 - x)} \) (*) là
Tích các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
Xác định m để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) ℝ.
Cho f(x) = x2 – 4. Tìm khẳng định sai trong các khẳng định sau đây
Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\] thuộc khoảng nào trong các khoảng sau
Bài tập cuối chương VII