Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 105

Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy các điểm D và E trên AB, AC sao cho \[\widehat {DME} = \widehat B\]

Chứng minh rằng \[\Delta BDM\sim\Delta CME\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy các điểm D và E trên  (ảnh 1)

Ta có: \[\widehat {DMC} = \widehat B + \widehat {BDM}\] (góc ngoài tại đỉnh M của tam giác BDM) suy ra \[\widehat B + \widehat {BDM} = \widehat {DME} + \widehat {EMC}\]

Mặt khác, \[\widehat B = \widehat {DME}\] nên ta có \[\widehat {BDM} = \widehat {EMC}\]

Xét \[\Delta BDM\]\[\Delta CME\] có: \[\widehat {BDM} = \widehat {EMC},\,\,\widehat B = \widehat C\]

Suy ra \[\Delta BDM\sim\Delta CME\] (g.g)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD, trên tia đối của tia DA lấy điểm M sao cho \[DM = AB\], trên tia đối của tia BA lấy điểm N sao cho \[BN = AD\]. Chứng minh:

\[\Delta CBN\]\[\Delta CDM\] cân

Xem đáp án » 20/09/2022 355

Câu 2:

Cho tam giác ABC vuông tại A. Kẻ đường cao AH của tam giác.

Kẻ \(HM \bot AB\)\(HN \bot AC\). Chứng minh \(AM.AB = AN.AC\)

Xem đáp án » 20/09/2022 330

Câu 3:

Cho tam giác ABC có \[AB = 18cm,\,AC = 24cm,\,BC = 30cm\]. Gọi M là trung điểm của BC. Qua M kẻ đường vuông góc với BC cắt AB, AC lần lượt ở D, E.

Chứng minh rằng: \[\Delta ABC\sim\Delta MDC\]

Xem đáp án » 20/09/2022 320

Câu 4:

Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].

Tính BD và CD

Xem đáp án » 20/09/2022 306

Câu 5:

Cho tứ giác ABCD có diện tích 36 cm2, trong đó diện tích \[\Delta ABC\] là 11 cm2222222331xcc 2. Qua điểm B kẻ đường thẳng song song với AC cắt AD ở M, cắt CD ở N. Tính diện tích \[\Delta MND\].

Xem đáp án » 20/09/2022 297

Câu 6:

Cho tam giác ABC, AD là tia phân giác của góc A; \[AB < AC\]. Trên tia đối của tia DA lấy điểm I sao cho \[\widehat {ACI} = \widehat {BDA}\]. Chứng minh rằng

\[A{D^2} = AB.AC - BD.CD\]

Xem đáp án » 20/09/2022 221

Câu 7:

Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

Chứng minh rằng \[\Delta FHE\sim\Delta BHC\]

Xem đáp án » 20/09/2022 205

Câu 8:

Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

Chứng minh rằng \[AE.AC = AF.AB\]

Xem đáp án » 20/09/2022 195

Câu 9:

Cho hình thang ABCD \[(AB\parallel CD)\]\[\widehat {DAB} = \widehat {DBC}\]\[AD = 5cm,\,AB = 3cm,\,BC = 9cm\].

Chứng minh \[\Delta DAB\sim\Delta CBD\].

Xem đáp án » 20/09/2022 190

Câu 10:

Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

Chứng minh rằng \[\Delta AFE\sim\Delta ACB\]

Xem đáp án » 20/09/2022 186

Câu 11:

Cho tam giác ABC, AD là tia phân giác của góc A; \[AB < AC\]. Trên tia đối của tia DA lấy điểm I sao cho \[\widehat {ACI} = \widehat {BDA}\]. Chứng minh rằng

\[\Delta ADB\~\Delta ACI;\,\,\Delta ADB\sim\Delta CDI\]

Xem đáp án » 20/09/2022 182

Câu 12:

Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy các điểm D và E trên AB, AC sao cho \[\widehat {DME} = \widehat B\]

Chứng minh rằng \[\Delta MDE\sim\Delta DBM\]

Xem đáp án » 20/09/2022 181

Câu 13:

Cho hình bình hành ABCD, trên tia đối của tia DA lấy điểm M sao cho \[DM = AB\], trên tia đối của tia BA lấy điểm N sao cho \[BN = AD\]. Chứng minh:

\[\Delta CBN\sim\Delta MDC\]

Xem đáp án » 20/09/2022 172

Câu 14:

Cho tam giác ABC vuông ở A, điểm M thuộc cạnh AC. Kẻ MD vuông góc với BC tại D. Gọi E là giao điểm của AB và MD.

Chứng minh rằng \[MA.MC = MD.ME\]

Xem đáp án » 20/09/2022 171

Câu 15:

Cho tam giác ABC vuông tại A có \[AB = 20cm,\,\,BC = 25cm\]. Gọi M là điểm thuộc cạnh AB.

Tính AC

Xem đáp án » 20/09/2022 170

Câu hỏi mới nhất

Xem thêm »
Xem thêm »