Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng?
A. Nếu số nguyên n có chữ số tận cùng là 5 thì số nguyên n chia hết cho 5
B. Nếu tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác ABCD là hình bình hành
C. Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD có hai đường chéo bằng nhau
D. Nếu tứ giác ABCD là hình thoi thì tứ giác ABCD có hai đường chéo vuông góc với nhau
Đáp án cần chọn là: B
Xét mệnh đề đảo của đáp án A: “Nếu số nguyên n chia hết cho 5 thì số nguyên n có chữ số tận cùng là 5”. Mệnh đề này sai vì số nguyên n cũng có thể có chữ số tận cùng là 0.
Xét mệnh đề đảo của đáp án B: “Nếu tứ giác ABCD là hình bình hành thì tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm mỗi đường”. Mệnh đề này đúng.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai mệnh đề P và Q. Phát biểu nào sau đây sai về mệnh đề đúng
PQ?
Mệnh đề đảo của mệnh đề “Ba số tự nhiên liên tiếp thì có tổng chia hết cho 3” được phát biểu là:
Giải bài toán sau bằng phương pháp chứng minh phản chứng: “Chứng minh rằng với mọi x, y, z bất kì thì các bất đẳng thức sau không đồng thời xảy ra ”
Một học sinh đã lập luận tuần tự như sau:
I) Giả định các đẳng thức xảy ra đồng thời.
II) Thế thì nâng lên bình phương hai vế các bất đẳng thức, chuyển vế phải sang vế trái, rồi phân tích, ta được:
(x – y + z)(x + y – z) < 0
(y – z + x)(y + z – x) < 0
(z – x + y)(z + x – y) < 0
III) Sau đó, nhân vế theo vế ta thu được:(x – y + z)2(x + y – z)(-x + y + z) < 0 (vô lí)
Lý luận trên, nếu sai thì sai từ giai đoạn nào?
Cho mệnh đề : “Vì 32 + 1 là số chẵn nên 3 là số lẻ”. Chọn mệnh đề đúng:
Cho các mệnh đề:
(1)“là số vô tỉ nếu và chỉ nếu 3 là số hữu tỉ”
(2) “Tứ giác là hình thang có hai cạnh bên bằng nhau nếu và chỉ nếu nó là hình bình hành”
(3) “Tứ giác là hình bình hành có hai cạnh kề bằng nhau nếu và chỉ nếu nó là hình thoi”
(4) “3 > 4 khi và chỉ khi 1 > 2”
Số mệnh đề sai là:
Mệnh đề chứa biến: “” đúng với một trong những giá trị nào của x dưới đây?
“Chứng minh rằng là số vô tỉ”. Một học sinh đã lập luận như sau:
Bước 1: Giả sử là số hữu tỉ, thế thì tồn tại các số nguyên dương m, n sao cho (1)
Bước 2: Ta có thể giả định thêm là phân số tối giản
Từ đó (2)
Suy ra m2 chia hết cho 2 m chia hết cho 2 ta có thể viết m = 2p
Nên (2) trở thành
Bước 3: Như vậy ta cũng suy ra n chia hết cho 2 và cũng có thể viết
Và (1) trở thành không phải là phân số tối giản, trái với giả thiết
Bước 4: Vậy là số vô tỉ.
Lập luận trên đúng tới hết bước nào?
Cho các mệnh đề:
(1) “Nếu là số vô tỉ thì 3 là số hữu tỉ”
(2) “Nếu tứ giác là hình thang có hai cạnh bên bằng nhau thì nó là hình bình hành”
(3) “Nếu tứ giác là hình bình hành có hai cạnh bên bằng nhau thì nó là hình thoi”
(4) “Nếu 3 > 4 thì 1 > 2”
Số mệnh đề có mệnh đề đảo là mệnh đề đúng là: