Cho hàm số: y = 4x3 + mx (m là tham số) (1)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với m = 1.
b) Viết phương trình tiếp tuyến của (C) song song với đường thẳng y = 13x + 1.
c) Xét sự biến thiên của hàm số (1) tùy thuộc vào giá trị m.
a) y = 4x3 + x, y′ = 12x2 + 1 > 0, ∀ x ∈ R
Bảng biến thiên:
Đồ thị:
b) Giả sử tiếp điểm cần tìm có tọa độ (x0; y0) thì f′(x0) = 12x20 + 1 = 13 (vì tiếp tuyến song song với đường thẳng (d): y = 3x + 1). Từ đó ta có: x0 = 1 hoặc x0 = -1
Vậy có hai tiếp tuyến phải tìm là y = 13x + 8 hoặc y = 13x - 8
c) Vì y’ = 12x2 + m nên m ≥ 0; y” = –6(m2 + 5m)x + 12m
+) Với m ≥ 0 ta có y’ > 0 (khi m = 0; y’ = 0 tại x = 0).
Vậy hàm số (1) luôn luôn đồng biến khi m ≥ 0; y” = –6(m2 + 5m)x + 12m
+) Với m < 0 thì y = 0 ⇔
Từ đó suy ra:
y’ > 0 với
y’ < 0 với
Vậy hàm số (1) đồng biến trên các khoảng
và nghịch biến trên khoảng
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xác định giá trị của tham số m để phương trình x3 + mx2 + x - 5 = 0 có nghiệm dương
Cho hàm số: y = –(m2 + 5m)x3 + 6mx2 + 6x – 5
a) Xác định m để hàm số đơn điệu trên R. Khi đó, hàm số đồng biến hay nghịch biến? Tại sao?
b) Với giá trị nào của m thì hàm số đạt cực đại tại x = 1 ?
Cho hàm số: y = f(x) = x4 – 2mx2 + m3 – m2
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.
b) Xác định m để đồ thị (Cm) của hàm số đã cho tiếp xúc với trục hoành tại hai điểm phân biệt.
Cho hàm số : y = x3 – 3x2
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
b) Tìm các giá trị của tham số m để phương trình: x3 – 3x2 – m = 0 có ba nghiệm phân biệt.
(Đề thi tốt nghiệp THPT năm 2008).
Xác định giá trị của tham số m để phương trình
có nghiệm duy nhất
Chứng minh rằng phương trình 3x5 + 15x - 8 = 0 chỉ có một nghiệm thực
Cho hàm số: y = –x4 – x2 + 6
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng: y = –1
Xác định giá trị của tham số m để hàm số y = x3 + mx2 - 3 có cực đại và cực tiểu.
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
b) Chứng minh rằng giao điểm I của hai tiệm cận của (C) là tâm đối xứng của (C).
c) Tìm điểm M trên đồ thị của hàm số sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ M đến tiệm cận ngang.
Xác định giá trị của tham số m để hàm số
nghịch biến trên mỗi khoảng xác định của nó
Số giao điểm của đồ thị hàm số y = (x − 3)(x2 + x + 4) với trục hoành là:
Cho hàm số:
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
b) Viết phương trình các đường thẳng đi qua O(0;0) và tiếp xúc với (C) .
c) Tìm tất cả các điểm trên (C) có tọa độ là các số nguyên.