Cho phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng ∆: x + 4 = 0. Tìm toạ độ điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của (P) bằng
A. M (– 1; 4) hoặc M(1; – 4);
B. M (1; 2) hoặc M(1; – 2);
C. M (1; 4) hoặc M(– 1; 4);
Hướng dẫn giải
Đáp án đúng là: D
Phương trình chính tắc của (P) có dạng: y2 = 2px (p > 0)
Vì (P) có đường chuẩn ∆ : x + 4 = 0 hay x = −4 ⇒ ⇔ p = 8
Do đó phương trình chính tắc của (P) là: y2 = 16x
Gọi M(x0; y0). Vì M thuộc (P) nên ta có:
d(M; ∆) = MF = 5
⇔
⇔
⇔
⇔
Với x0 = – 9 ta có: y02 = 16 .(– 9) = – 144 (vô lí)
Với x0 = 1 ta có: y02 = 16.1 = 16 ⇔
Vậy M (1; 4) hoặc M(1; – 4).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho elip (E) : 9x2 + 16y2 = 144 . Với M là điểm thuộc elip biết = 60°. Tính MF1.MF2
Cho elip (E) : . Qua tiêu điểm F1 của (E) dựng đường thẳng song song với Oy và cắt (E) tại hai điểm M và N. Tính độ dài MN
Viết phương trình đường thẳng hypebol (H), biết (H) đi qua điểm M(3; −4) và có 1 tiêu điểm là F2(5; 0)
Cho parabol (P): y2 = 4x và 2 điểm A(0; -4) , B(-6; 4).Tìm điểm C thuộc (P) sao cho tam giác ABC vuông tại A
Bài 22: Ba đường conic