Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

19/07/2024 582

Cho elip (E) : 9x2 + 16y2 = 144 . Với M là điểm thuộc elip biết F1MF2^= 60°. Tính MF1.MF2


A. 1; 



B. 16;


C. 9;

D. 12.

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Ta có: 9x2 + 16y2 = 144 x216+y29=1. Khi đó: a = 4; b = 3; c = 7.

F1 (−7;0); F2 (7; 0); F1F2 = 2c = 27; MF1 + MF2 = 8

Áp dụng định lí cosin trong tam giác MF1F2 ta có:

F1F22 = MF12 + MF22 − 2MF1. MF2. cosF1MF2^ 

28 = MF12 + MF22 − 2MF1. MF2. cos60º

28 = MF12 + MF22 − MF1. MF2

MF12 + MF22 + 2MF1. MF2 − 3MF1. MF2 = 28

(MF1 + MF2)2 − 3MF1. MF2 = 28

64 − 3MF1. MF2 = 28

MF1. MF2 = 12.

Câu trả lời này có hữu ích không?

1

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng ∆: x + 4 = 0. Tìm toạ độ điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của (P) bằng 

Xem đáp án » 29/10/2022 299

Câu 2:

Cho elip (E) : x2100+y236=1. Qua tiêu điểm F1 của (E) dựng đường thẳng song song với Oy và cắt (E) tại hai điểm M và N. Tính độ dài MN

Xem đáp án » 29/10/2022 222

Câu 3:

Viết phương trình đường thẳng hypebol (H), biết (H) đi qua điểm M(32; −4) và có 1 tiêu điểm là F2(5; 0)

Xem đáp án » 29/10/2022 204

Câu 4:

Cho parabol (P): y2 = 4x và 2 điểm A(0; -4) , B(-6; 4).Tìm điểm C thuộc (P) sao cho tam giác ABC vuông tại A

Xem đáp án » 29/10/2022 170

LÝ THUYẾT

Bài 22: Ba đường conic

Câu hỏi mới nhất

Xem thêm »
Xem thêm »