Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

19/07/2024 301

Cho hàm số y=x3+17x2-24x+8. Kết luận nào sau đây là đúng?

A. xCD=1

B. xCD=23

C. xCD=-3

D. xCD=-12

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Chọn D

Lập bảng biến thiên ta thấy hàm số đạt cực đại tại x= -12

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết đồ thị hàm số y=x3-3x+1 có hai điểm cực trị A,B . Khi đó phương trình đường thẳng AB 

Xem đáp án » 31/12/2021 4,224

Câu 2:

Gọi M,n lần lượt là giá trị cực đại, giá trị cực tiểu của hàm số y=x2+3x+3x+2 . Khi đó giá trị của biểu thức M2-2n bằng

Xem đáp án » 31/12/2021 3,417

Câu 3:

Cho hàm số y=f(x). Khẳng định nào sau đây là đúng?

Xem đáp án » 01/01/2022 2,649

Câu 4:

Cho hàm số y=x4-2x2+3 . Khẳng định nào sau đây là đúng?

Xem đáp án » 31/12/2021 2,219

Câu 5:

Cho hàm số y=f(x). Hàm số y=f'(x) có đồ thị như hình vẽ:

Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án » 01/01/2022 2,187

Câu 6:

Cho hàm số y=f(x) có đạo hàm trên R. Khẳng định nào sau đây là đúng?

Xem đáp án » 01/01/2022 1,813

Câu 7:

Cho hàm số y=x2-2x. Khẳng định nào sau đây là đúng

Xem đáp án » 31/12/2021 1,704

Câu 8:

Cho hàm số y=f(x) xác định trên a,b và x0 thuộc đoạn a,b. Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án » 01/01/2022 1,676

Câu 9:

Trong các khẳng định sau đây, khẳng định nào là khẳng định sai?

Xem đáp án » 01/01/2022 1,675

Câu 10:

Cho hàm số y = f(x) có bảng biến thiên

Khẳng định nào sau đây là đúng?

Xem đáp án » 31/12/2021 1,390

Câu 11:

Cho hàm số y= 3x4-6x2+1y=3x4 -6x2 +1 . Kết luận nào sau đây là đúng?

Xem đáp án » 31/12/2021 1,151

Câu 12:

Cho hàm số y = x3 -3x2 +2 . Khẳng định nào sau đây là đúng?

Xem đáp án » 31/12/2021 1,108

Câu 13:

Trong các hàm số sau, hàm số nào đạt cực đại tại x=32?

Xem đáp án » 31/12/2021 1,063

Câu 14:

Hàm số bậc ba có thể có bao nhiêu điểm cực trị?

Xem đáp án » 01/01/2022 1,002

Câu 15:

Hàm số nào sau đây không có cực trị?

Xem đáp án » 01/01/2022 827

LÝ THUYẾT

I. Khái niệm cực đại, cực tiểu.

- Định nghĩa.

Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) (có thể a là -; b là +) và điểm x0 (a; b).

a) Nếu tồn tại số h > 0 sao cho f(x) < f(x0) với mọi x (x0 – h; x0 + h) và xx0 thì ta nói hàm số f(x) đạt cực đại tại x0.

b) Nếu tồn tại số h > 0 sao cho f(x) > f(x0) với mọi x(x0 – h; x0 + h) và xx0 thì ta nói hàm số f(x) đạt cực tiểu tại x0.

- Chú ý:

1. Nếu hàm số f(x) đạt cực đại (cực tiểu) tại x0 thì x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số.

Kí hiệu là f (fCT) còn điểm M(x0; f(x0)) được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2. Các điểm cực đại, cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3. Dễ dàng chứng minh được rằng, nếu hàm số y = f(x) có đạo hàm trên khoảng (a; b) và đạt cực đại hoặc cực tiểu tại x0 thì f’(x0) = 0.

II. Điều kiện đủ để hàm số có cực trị

- Định lí 1

Giả sử hàm số y = f(x) liên tục trên khoảng K = (x0 – h; x0 + h) và có đạo hàm trên K  hoặc trên K \ {x0}; với h > 0.

a) Nếu f’(x) > 0 trên khoảng (x0 – h; x0) và f’(x) < 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực đại của hàm số f(x).

b) Nếu f’(x) < 0 trên khoảng (x0 – h; x0) và f’(x) > 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực tiểu của hàm số f(x).

Bài 2: Cực trị của hàm số (ảnh 1)

Ví dụ 1. Tìm các điểm cực trị của hàm số y = – 2x3 + 3x2.

Lời giải:

Hàm số xác định với mọi x.

Ta có: y’ = – 6x2 + 6x

Và y’ = 0 [x=0x=1

Bảng biến thiên:

Bài 2: Cực trị của hàm số (ảnh 1)

Từ bảng biến thiên, suy ra x = 0 là điểm cực tiểu của hàm số và x = 1 là điểm cực đại của hàm số.

Ví dụ 2. Tìm các điểm cực trị của hàm số y=2-x2x+ 2.

Lời giải:

Hàm số đã cho xác định với x-1.

Ta có: y'=-6(2x+2)2<0

Vậy hàm số đã cho không có cực trị (vì theo khẳng định 3 của chú ý trên, nếu hàm số đạt cực trị tại x0 thì y’(x0) = 0).

III. Quy tắc tìm cực trị .

- Quy tắc 1.

1. Tìm tập xác định.

2. Tính f’(x). Tìm các điểm tại đó f’(x) bằng 0 hoặc f’(x) không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

- Định lí 2.

Giả sử hàm số y = f(x) có đạo  hàm cấp hai trong khoảng (x0 – h; x0 + h) với h > 0. Khi đó:

a) Nếu f’(x0) = 0; f”(x0) > 0 thì x0 là điểm cực tiểu;

b) Nếu f’(x0) = 0; f”(x0) < 0 thì x0 là điểm cực đại.

- Quy tắc II.

1. Tìm tập xác định

2. Tính f’(x). Giải phương trình f’(x) = 0 và kí hiệu xi ( i = 1; 2; ….; n) là các nghiệm của nó.

3. Tính f”(x) và f”(xi).

4. Dựa vào dấu của f”(xi) suy ra tính chất cực trị của điểm xi.

- Ví dụ 4. Tìm cực trị của hàm số f(x)=x4-  2x2+  10.

Lời giải:

Hàm số đã cho xác định với mọi x

Ta có: f’(x) = 4x3 – 4x

f'(x)=0[x=0x=±1

Ta có: f”(x) = 12x2 – 4

Suy ra: f”(0) = – 4 < 0 nên x = 0 là điểm cực đại.

f”(1) = f”(– 1)  = 8 > 0 nên x = 1 và x = –1 là điểm cực tiểu.

Kết luận:

Hàm số f(x) đạt cực tiểu tại x = 1 và x = – 1; fCT = f(1) = f(–1) = 9.

Hàm số f(x) đạt cực đại tại x = 0 và fCD = f(0) = 10.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »