Cho a,b,c là các số tự nhiên, thỏa mãn a – b là số nguyên tố, 3c2 = c(a + b) + ab.
Chứng minh rằng 8c + 1 là số chính phương.
Ta có: 3c2 = c(a + b) + ab ⇒ 4c2 = c2 + ca + cb + ab = (a + c)(b + c) (1)
Vì a – b là số nguyên tố ⇒ a > b và a + c > b + c ⇒ (b + c)2 < (a + c)(b + c) (2)
Từ (1) và (2) ⇒ b + c < 2c ⇒ b < c (3)
Ta lại có (a + c) – (b + c) = a – b là số nguyên tố
⇒ Hoặc a – b ∈ ƯC(a + c, b + c) hoặc (a + c, b + c) = 1
* Nếu a – b = p ∈ ƯC(a + c, b + c) ⇒ a + c = p.k và b + c = p.h (k, h ∈ ℕ)
⇒ pk – ph = a – b = p ⇒ k – h = 1 (vì p ≠ 0) ⇒ k = h + 1
Khi đó (1) trở thành (2c)2 = p2kh = p2k(k + 1) ⇒ k(k + 1) là số chính phương.
Mà k và k + 1 là hai số tự nhiên liên tiếp
⇒ k = 0 ⇒ b + c = pk = 0 (mâu thuẫn với (3))
* Nếu (a + c, b + c) = 1
Từ (1) ⇒ (2c)2 = (a + c)(b + c)
Đặt a + c = m2 và b + c = n2 (m, n ∈ ℕ)
⇒ m2 – n2 = (m – n)(m + n) = a – b là số nguyên tố.
Mà m – n < m + n ⇒ m – n = 1 và m + n = a – b
Khi đó 8c + 1 = 4m(m – 1) + 1 = (2m – 1)2 là số chính phương.
Vậy 8c + 1 là số chính phương.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Môt thửa ruộng hình chữ nhật có chu vi 400m, chiều rộng bằng chiều dài. Người ta cấy lúa ở thửa ruộng đó ,tính ra cứ 100m2 thu hoạch được 50kg thóc. Hỏi thửa ruộng đó thu hoạch được bao nhiêu tạ thóc?
Một khu nghỉ mát hình chữ nhật có chu vi 3 km 7 hm và chiều dài gấp 4 lần chiều rộng. Hỏi diện tích khu nghỉ mát đó là bao nhiêu mét vuông, bao nhiêu héc ta?
Một khu rừng có chu vi là 5 km 60 dam. Chiều dài hơn chiều rộng 800m.
a) Hỏi diện tích khu rừng đó bằng bao nhiêu héc-ta, bằng bao nhiêu mét vuông?
Cho tam giác ABC, trung tuyến AM. Gọi I là trung điểm của AM, D là giao điểm của BI và AC. Chứng minh:
Vụ mùa vừa qua, gia đình bác Tư thu hoạch từ hai thửa ruộng được 75 tạ thóc. Thửa ruộng thứ hai thu hoạch được nhiều hơn thửa ruộng thứ nhất 7 tạ thóc. Hỏi trên mỗi thửa ruộng bác Tư thu hoạch được bao nhiêu tạ thóc?
Một phép chia có số dư là số dư lớn nhất có thể có trong phép chia. Nếu gấp cả số bị chia và số chia lên 4 lần thì được phép chia mới có thương là 25 và số dư là 24. Tìm số bị chia và số chia.
Để lát một căn phòng hình chữ nhật có chiều dài 12m, chiều rộng 8m, người ta dùng gạch men hình vuông có cạnh 4 dm. Hỏi cần bao nhiêu viên gạch để lát kín căn phòng đó?
Số A chia cho 21 dư 7. Hỏi a phải thay đổi thế nào để được phép chia không còn dư và thương giảm đi 3 đơn vị (Số chia vẫn là 21).
Tứ giác ABCD có . So sánh độ dài AC và BD.
Nếu AC = BD thì tứ giác ABCD là hình gì?
Chứng minh rằng với mọi x, y, z ta luôn có:
b) x2 + y2 + z2 ≥ 2xy – 2xz + 2yz.
Chứng minh rằng với mọi x, y, z ≥ 0 ta luôn có:
a) x2 + y2 + z2 ≥ 2xy – 2xz + 2yz.
Một đơn vị bộ đội dự kiến cần 45 người để hoàn thành 1 công việc trong 14 ngày sau đó để rút ngắn thời gian đơn vị đã điều động 70 người tham gia. Hỏi đơn vị đã hoàn thành trong bao nhiêu ngày? (Biết năng suất của mỗi người như nhau).
Cho a, b ∈ ℤ thỏa mãn 2a + 3b chia hết cho 11. Chứng minh a + 7b chia hết cho 11.
b) Biết rằng diện tích khu rừng trồng cây mới, tính tỉ số diện tích trồng cây mới và diện tích phần còn lại của khu rừng.