IMG-LOGO

Câu hỏi:

17/07/2024 46

Có 2 vật M và N thoạt đầu cách nhau khoảng l. Cùng lúc 2 vật chuyển động thẳng đều, m chạy về B với vận tốc v1, N chạy về C với vận tốc v2. Tính khoảng cách ngắn nhất giữa hai vật và thời gian để đạt khoảng cách ngắn nhất giữa hai vật kể từ lúc bắt đầu chuyển động.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Có 2 vật M và N thoạt đầu cách nhau khoảng l. Cùng lúc 2 vật chuyển động  (ảnh 1)

Sau khoảng thời gian t:

dM/B = l – v1 . t

dB/N = V2 . t

Áp dụng công thức hàm số côsin

\[{d_{MN}} = \sqrt {{{(l - {v_1}t)}^2} + {{({v_2}t)}^2} - 2.(l - {v_1}t){v_2}t.\cos \alpha } \]

\[ \Rightarrow {d^2} = {l^2} - 2{v_1}.l.t + {v_1}^2.{t^2} + {v_2}^2.{t^2} + 2.{v_1}.{v_2}.{t^2}.\cos \alpha - 2l.{v_2}.t.\cos \alpha \]

\[ \Rightarrow {d^2} = ({v_1}^2 + {v_2}^2 + 2.{v_1}{v_2}\cos \alpha ){t^2} - 2l({v_1} - {v_2}\cos \alpha ).t + {l^2}(1)\]

Nhận xét (l) là một hàm số bậc hai của t.

Do đó: \[{d_{\min }} = \sqrt {\frac{{ - \Delta }}{{4a}}} \]

\[ = \sqrt {\frac{{ = \sqrt {4\left[ {({v_1}^2 + {v_2}^2 + 2.{v_1}{v_2}\cos \alpha ){l^2}} \right]} - 4{l^2}{{({v_1} - {v_2}\cos \alpha )}^2}}}{{\sqrt {({v_1}^2 + {v_2}^2 + 2.{v_1}{v_2}\cos \alpha )} }}} \]

\[ = \frac{{l{v_2}\sin \alpha }}{{{v_1}^2 + {v_2}^2 + 2.{v_1}{v_2}\cos \alpha }}\].

Khi đó \[{t_{\min }} = \frac{{2l({v_1} - {v_2}\cos \alpha )}}{{2({v_1}^2 + {v_2}^2 + 2.{v_1}{v_2}\cos \alpha )}}\]

Vậy \[{d_{\min }} = \frac{{l{v_2}\sin \alpha }}{{{v_1}^2 + {v_2}^2 + 2.{v_1}{v_2}\cos \alpha }}\]; \[{t_{\min }} = \frac{{2l({v_1} - {v_2}\cos \alpha )}}{{2({v_1}^2 + {v_2}^2 + 2.{v_1}{v_2}\cos \alpha )}}\].

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ điểm M nằm ngoài đường tròn (O), vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA, MB đến đường tròn (O) sao cho C nằm giữa M và D. Gọi I là trung điểm của CD. Gọi K là giao điểm của các tiếp tuyến tại C và D của đường tròn (O). Chứng minh: A, B, K thẳng hàng.

Xem đáp án » 01/04/2024 131

Câu 2:

Trong không gian Oxyz, cho hai điểm A(2; 2; 1), \[B\left( {\frac{{ - 8}}{3};\frac{4}{3};\frac{8}{3}} \right)\]. Viết phương trình đường thẳng đi qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).

Xem đáp án » 01/04/2024 88

Câu 3:

Cho hàm số bậc nhất y = (2k 1)x + 3 – k (k là hệ số) có đồ thị là đường thẳng (d). Tìm giá trị của k để đồ thị hàm số cắt đường thẳng (d’): y = 2x + 1 tại điểm có hoành độ bằng 2.

Xem đáp án » 01/04/2024 87

Câu 4:

Cho hình chữ nhật ABCD (AB > BC). Từ B kẻ BH vuông góc với AC tại H. Lấy E sao cho H là trung điểm BE, lấy Q đối xứng với C qua H. Tứ giác BCEQ là hình gì? Vì sao?

Xem đáp án » 01/04/2024 79

Câu 5:

Cho hàm số bậc nhất y = (2k 1)x + 3 – k (k là hệ số) có đồ thị là đường thẳng (d). Tìm giá trị của k để đồ thị hàm số song song với đường thẳng (m): y = 0,5x 3.

Xem đáp án » 01/04/2024 78

Câu 6:

Cho hình bình hành ABCD, một đường thẳng d đi qua A cắt đường chéo BD tại P, cắt các đường thẳng BC và CD lần lượt là M và N. Chứng minh BM.DN không đổi.

Xem đáp án » 01/04/2024 68

Câu 7:

Cho nửa đường tròn (O) đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K; B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP song song với KM. Gọi Q là giao điểm của các đường thẳng AP, BM. Chứng minh ΔKMN vuông cân.

Xem đáp án » 01/04/2024 68

Câu 8:

Cho a, b, c > 0 thoả mãn \[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 3\]. Tìm giá trị nhỏ nhất của biểu thức:

\[P = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\].

Xem đáp án » 01/04/2024 60

Câu 9:

Hình vẽ bên có BE ^ BA, CF ^ CA, EH ^ BC, FK ^ BC, BE = BA và CA = CF. Chứng minh: BH = CK.

Hình vẽ bên có BE vuông góc BA, CF vuông góc CA, EH vuông góc BC, FK vuông góc (ảnh 1)

Xem đáp án » 01/04/2024 54

Câu 10:

Phân tích đa thức thành nhân tử: x³ – 7x – 6.

Xem đáp án » 01/04/2024 54

Câu 11:

Từ bảy chữ số 1; 2; 3; 4; 5; 6; 7, lập các số có ba chữ số đôi một khác nhau. Có thể lập được bao nhiêu số như vậy?

Xem đáp án » 01/04/2024 53

Câu 12:

Biết tổng các hệ của khai triển (x² + 1)n bằng 1024. Hãy tìm hệ số của x¹² trong khai triển trên.

Xem đáp án » 01/04/2024 52

Câu 13:

Tìm hệ số của x12 trong khai triển nhị thức Niu-tơn (2x x2)10

Xem đáp án » 01/04/2024 49

Câu 14:

Cho tập hợp A = {1; 2; 3; …; 10}. Chọn ngẫu nhiên ba số từ A. Tìm xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.

Xem đáp án » 01/04/2024 47

Câu 15:

Cho nửa đường tròn (O) đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K; B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP song song với KM. Gọi Q là giao điểm của các đường thẳng AP, BM. So sánh hai tam giác ΔAKN và ΔBKM.

Xem đáp án » 01/04/2024 46

Câu hỏi mới nhất

Xem thêm »
Xem thêm »