Thứ năm, 12/12/2024
IMG-LOGO

Câu hỏi:

17/07/2024 91

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.

a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Giả sử BC = 2a. Tính BM . CN.

d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét tam giác ABC có

\(\widehat A + \widehat B + \widehat C = 180^\circ \) (tổng ba góc trong một tam giác)

Hay \(\widehat A + \alpha + \alpha = 180^\circ \)

Suy ra \(\widehat A = 180^\circ - 2\alpha \)

Xét tứ giác AHOK có

\(\widehat {AHO} + \widehat {AK{\rm{O}}} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác AHOK nội tiếp

Do đó \(\widehat {HAK} + \widehat {HOK} = 180^\circ \)

Hay \(180^\circ - 2\alpha + \widehat {HOK} = 180^\circ \)

Suy ra \(\widehat {HOK} = 2\alpha \)

Xét (O) có MH, ME là hai tiếp tuyến cắt nhau tại M

Suy ra OM là tia phân giác của \(\widehat {HOE}\)

Do đó \(\widehat {HOM} = \widehat {MOE} = \frac{1}{2}\widehat {HOE}\)

Xét (O) có NK, NE là hai tiếp tuyến cắt nhau tại N

Suy ra ON là tia phân giác của \(\widehat {KOE}\)

Do đó \(\widehat {KON} = \widehat {NOE} = \frac{1}{2}\widehat {KOE}\)

Ta có: \(\widehat {MON} = \widehat {MOE} + \widehat {NOE} = \frac{1}{2}\widehat {HOE} + \frac{1}{2}\widehat {K{\rm{O}}E} = \frac{1}{2}\widehat {HOK} = \frac{1}{2}.2\alpha = \alpha \)

Vậy \(\widehat {MON} = \alpha \)

b) Xét (O) có MH, ME là hai tiếp tuyến cắt nhau tại M

Suy ra MO là tia phân giác của \(\widehat {HME}\)

Do đó \(\widehat {HMO} = \widehat {OME} = \frac{1}{2}\widehat {HME}\)

Xét (O) có NK, NE là hai tiếp tuyến cắt nhau tại N

Suy ra NO là tia phân giác của \(\widehat {KNE}\)

Do đó \(\widehat {KNO} = \widehat {ONE} = \frac{1}{2}\widehat {KNE}\)

Xét ∆BMO và ∆OMN có:

\(\widehat {BMO} = \widehat {NMO}\) (chứng minh trên);

\(\widehat B = \widehat {MON}\left( { = \alpha } \right)\)

Suy ra (g.g)

Xét ∆CON và ∆OMN có

\(\widehat {CNO} = \widehat {MNO}\) (chứng minh trên);

\(\widehat C = \widehat {MON}\left( { = \alpha } \right)\)

Suy ra (g.g)

Vậy OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng

Suy ra

Do đó \(\frac{{CO}}{{BM}} = \frac{{CN}}{{BO}}\)

Suy ra BM . CN = CO . BO = a . a = a2

d) Vì tích BM . CN = a2 cố định nên tổng BM + CN nhỏ nhất khi BM = CN

Mà AB = AC

Suy ra \(\frac{{BM}}{{AB}} = \frac{{CN}}{{AC}}\)

Do đó MN // BC

Vậy khi MN // BC thì BM + CN nhỏ nhất.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hỏi có bao nhiêu cách chọn ra hai số khác nhau trong các số tự nhiên từ 1 đến 20 sao cho tích của chúng chia hết cho 9?

Xem đáp án » 02/04/2024 136

Câu 2:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH. Chứng minh: \[{{\rm{a}}^2}\overrightarrow {IA} + {b^2}\overrightarrow {IB} + {c^2}\overrightarrow {IC} = \overrightarrow 0 \] với BC = a, AC = b và AB = c.

Xem đáp án » 02/04/2024 115

Câu 3:

Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ

Xem đáp án » 02/04/2024 99

Câu 4:

Cho hàm số \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\) có đồ thị (C). Tìm tất cả các giá trị của tham số m để đường thẳng y = mx + 2 cắt (C) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O.

Xem đáp án » 02/04/2024 99

Câu 5:

Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau, chia hết cho 5 và chữ số 2 luôn có mặt đúng một lần?

Xem đáp án » 02/04/2024 98

Câu 6:

Trên mặt phẳng tọa độ Oxy cho A(1; –1), B(2; 1) và C(4; 5). Ba điểm A, B, C có thẳng hàng không?

Xem đáp án » 02/04/2024 88

Câu 7:

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).

a) Chứng minh rằng OA vuông góc với BC.

b) Vẽ đường kính CD. Chứng minh rằng BD song song với AO.

c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2cm OA = 4cm.

Xem đáp án » 02/04/2024 70

Câu 8:

Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh. Tính xác suất để 3 đỉnh đó là 3 đỉnh của một tam giác vuông không cân.

Xem đáp án » 02/04/2024 61

Câu 9:

Cho tam giác ABC có số đo 3 góc \(\widehat A,\widehat B,\widehat C\) lần lượt tỉ lệ với 1, 2, 3. Tính số đo các góc của tam giác ABC? Tam giác ABC là tam giác gì? Vì sao?

Xem đáp án » 02/04/2024 58

Câu 10:

Cho đường tròn tâm O đường kính AB. Lấy điểm C thuộc đường tròn, với C không trùng A và B. Gọi I là trung điểm của AC. Vẽ tiếp tuyến của đường tròn tâm O tại tiếp điểm C cắt tia OI tại điểm D.

a) Chứng minh OI // BC.

b) Chứng minh DA là tiếp tuyến của đường tròn tâm O.

c) Vẽ CH AB (H AB) và BK CD (K CD). Chứng minh CK2 = HA . HB.

Xem đáp án » 02/04/2024 56

Câu 11:

Cho tứ diện ABCD. Gọi P, Q lần lượt là trung điểm của AB, CD. Điểm R nằm trên cạnh BC sao cho BR = 2RC. Gọi S là giao điểm của mp (PQR) và AD. Khi đó:

Xem đáp án » 02/04/2024 54

Câu 12:

Cho đường tròn (O; R) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC. Lấy D đối xứng với B qua O. Gọi E là giao điểm của đoạn thẳng AD với (O) (E không trùng với D). Chọn câu đúng nhất:

Xem đáp án » 02/04/2024 52

Câu 13:

Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác (M BC), trên cạnh AC lấy điểm N sao cho AB = AN.

a) Chứng minh ∆ABM = ∆ANM.

b) Chứng minh \(\widehat {BAC} = \widehat {CMN}\).

Xem đáp án » 02/04/2024 49

Câu 14:

Với các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt đúng 1 lần

Xem đáp án » 02/04/2024 49

Câu 15:

Một tam giác có chu vi bằng 36 cm cạnh của nó tỉ lệ với 3; 4; 5. Tính độ dài ba cạnh.

Xem đáp án » 02/04/2024 48

Câu hỏi mới nhất

Xem thêm »
Xem thêm »