Thứ năm, 12/12/2024
IMG-LOGO

Câu hỏi:

20/07/2024 49

Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40° Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số \(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với t ℤ và 0 < t ≤ 365.

(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020)

Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Để thành phố A có đúng 15 giờ có ánh sáng mặt trời thì:

\(3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 = 15\)

\( \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 1\)

\( \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow t - 80 = 91 + 364k\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow t = 171 + 364k\,\,\left( {k \in \mathbb{Z}} \right)\)

Do t ℤ và 0 < t ≤ 365 nên ta có:

\[\left\{ \begin{array}{l}k \in \mathbb{Z}\\0 < 171 + 364k \le 365\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\ - 171 < 364k \le 194\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\ - \frac{{171}}{{364}} < k \le \frac{{97}}{{182}}\end{array} \right. \Leftrightarrow k = 0\]

Với k = 0 thì t = 171 + 364.0 = 171.

Vậy thành phố A có đúng 15 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đường thẳng \(d:y = \frac{1}{2}\) cắt đồ thị hàm số y = sinx, x [‒π; π] tại hai giao điểm A0, B (Hình 33). Tìm hoành độ của hai giao điểm A0, B.

Đường thẳng dy = 1/2 cắt đồ thị hàm số y = sinx, x thuộc [-pi, pi] tại hai giao điểm (ảnh 1)

Xem đáp án » 13/04/2024 78

Câu 2:

Giải phương trình:

\(\sin \left( {3x + \frac{\pi }{4}} \right) = - \frac{1}{2}\);

Xem đáp án » 13/04/2024 77

Câu 3:

Giải phương trình: sin2x = cos3x

Xem đáp án » 13/04/2024 74

Câu 4:

Dùng đồ thị hàm số y = sinx, y = cosx để xác định số nghiệm của phương trình:

3sinx + 2 = 0 trên khoảng \(\left( { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right)\);

Xem đáp án » 13/04/2024 65

Câu 5:

Tìm góc lượng giác x sao cho tanx = tan67°.

Xem đáp án » 13/04/2024 63

Câu 6:

Cho hai phương trình (với cùng ẩn x): x2 ‒ 3x + 2 = 0 (1)

                                                             (x – 1)(x – 2) = 0 (2)

Hai tập S1, S2 có bằng nhau hay không?

Xem đáp án » 13/04/2024 62

Câu 7:

Giải phương trình: (x – 1)2 = 5x – 11.

Xem đáp án » 13/04/2024 60

Câu 8:

Tìm góc lượng giác x sao cho cotx = cot(‒83°).

Xem đáp án » 13/04/2024 59

Câu 9:

Giải phương trình:

\({\cos ^2}2x = {\cos ^2}\left( {x + \frac{\pi }{6}} \right)\).

Xem đáp án » 13/04/2024 59

Câu 10:

Đường thẳng \(d:y = \frac{1}{2}\) cắt đồ thị hàm số y = cosx, x [π; 3π] tại hai giao điểm C1, D (Hình 34). Tìm hoành độ của hai giao điểm C1, D.

Xem đáp án » 13/04/2024 58

Câu 11:

Giải phương trình:

\(\sin \left( {2x - \frac{\pi }{3}} \right) = - \frac{{\sqrt 3 }}{2}\);

Xem đáp án » 13/04/2024 58

Câu 12:

Tìm góc lượng giác x sao cho sinx = sin55°.

Xem đáp án » 13/04/2024 57

Câu 13:

Giải phương trình:

2cos3x + 5 = 3;

Xem đáp án » 13/04/2024 57

Câu 14:

Giải phương trình:

\(\sin \left( {2x + \frac{\pi }{4}} \right) = \sin x\);

Xem đáp án » 13/04/2024 57

Câu 15:

Một vệ tinh nhân tạo bay quanh Trái Đất theo một quỹ đạo là đường elip (Hình 32). Độ cao h (km) của vệ tinh so với bề mặt Trái Đất được xác định bởi công thức \(h = 550 + 450\cos \frac{\pi }{{50}}t\) (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2021), trong đó t là thời gian tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo. Tại thời điểm t bằng bao nhiêu thì vệ tinh cách mặt đất 1 000 km; 250 km; 100 km?

Một vệ tinh nhân tạo bay quanh Trái Đất theo một quỹ đạo là đường elip Hình 32. Độ  (ảnh 1)

Trên thực tế, có nhiều bài toán dẫn đến việc giải một trong các phương trình có dạng: sinx = m, cosx = m, tanx = m, cotx = m, trong đó x là ẩn số, m là số thực cho trước. Các phương trình đó là các phương trình lượng giác cơ bản.

Xem đáp án » 13/04/2024 55

Câu hỏi mới nhất

Xem thêm »
Xem thêm »