Trong không gian Oxyz, cho ba vectơ
Trong các khẳng định sau, khẳng định nào sai?
A.
B.
C.
D.
Đáp án D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian Oxyz, cho ba điểm A(2;1;-3), B(4;2;-6), C(10;5;-15). Khẳng định nào sau đây là đúng?
Trong không gian Oxyz, cho tứ diện đều ABCD có A(0;1;2). Gọi H là hình chiếu vuông góc của A lên mặt phẳng (BCD). Cho H(4;-3;-2). Tọa độ tâm I và bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD là:
Trong không gian Oxyz, cho mặt cầu (S) có phương trình: - 2x - 2y - 4z + 5 = 0
Trong các khẳng định sau, khẳng định nào sai?
Trong không gian Oxyz, cho hai vectơ = (x'; y'; z'). Khẳng định nào dưới đây sai?
Trong không gian Oxyz, cho hai vectơ . Với những giá trị nào của m thì sinđạt giá trị lớn nhất
Trong không gian Oxyz, trong các khẳng định dưới đây, khẳng định nào đúng với mọi ?
Trong không gian Oxyz, cho hai điểm A(1;3;-1), B(5;4;-4). Khoảng cách giữa hai điểm A và B là:
Trong không gian Oxyz, cho tam giác ABC có A(2;3;-1), B(1;3;2), G(2;-3;-1) là trọng tâm của tam giác ABC. Tọa độ của điểm C là:
Trong không gian Oxyz, cho hai điểm A(2;2;2), B(-4;-4;-4). Điểm nào dưới đây nằm trên đường thẳng AB?
Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D' có A(1;0;0), B(1;2;0), D(2;-1;0), A’(5;2;2). Tọa độ điểm C’ là:
Trong không gian Oxyz, cho tam giác ABC có tọa độ các điểm là: A(). Gọi M là trung điểm của BC, G là trọng tâm tam giác ABC. Khẳng định nào sau đây là sai?
Trong không gian Oxyz , cho vectơ = (2; 1; -2). Tìm tọa độ của các vectơ cùng phương với vectơ và có độ dài bằng 6.
Trong không gian Oxyz, cho hai vectơ thay đổi. Trong các khẳng định dưới đây, khẳng định nào đúng?
Trong không gian Oxyz, cho tam giác ABC có A(1;2;0), B(-4;5;3), C(3;-10;-6). Tọa độ trọng tâm G của tam giác ABC là:
I. Tọa độ của điểm và của vecto
1. Hệ tọa độ
Trong không gian, xét ba trục tọa độ x’Ox; y’Oy; z’Oz vuông góc với nhau từng
đôi một và chung một điểm gốc O. Gọi lần lượt là các vectơ đơn vị, trên các
trục x’Ox; y’Oy; z’Oz.
Hệ ba trục như vậy gọi là hệ trục tọa độ Đề- các vuông góc Oxyz trong không gian,
hay đơn giản gọi là hệ trục tọa độ Oxyz.
Điểm O được gọi là gốc tọa độ.
Các mặt phẳng (Oxy); (Oyz); (Ozx) đôi một vuông góc với nhau được gọi là các mặt
phẳng tọa độ.
Không gian với hệ tọa độ Oxyz còn gọi là không gian Oxyz.
- Vì là các vecto đơn vị đôi một vuông góc với nhau nên:
.
2. Tọa độ của một điểm
- Trong không gian Oxyz, cho một điểm M tùy ý. Vì ba vecto không đồng
phẳng nên có một bộ ba số (x; y; z) duy nhất sao cho:
- Ngược lại, với bộ ba số (x; y; z) ta có một điểm M duy nhất trong không gian thỏa mãn hệ thức .
- Ta gọi bộ ba số (x; y; z) là tọa độ của điểm M đối với hệ trục tọa độ Oxyz đã cho và viết: M = (x; y; z) hoặc M (x; y; z).
3.Tọa độ của vecto
- Trong không gian Oxyz cho vecto , khi đó luôn tồn tại duy nhất bộ ba số (a1; a2 ; a3) sao cho .
Ta gọi bộ ba số (a1; a2 ; a3) là tọa độ của vecto đối với hệ tọa độ Oxyz cho trước và viết hoặc .
- Nhận xét : Trong hệ tọa độ Oxyz, tọa độ của điểm M chính là tọa độ của vecto .
Ta có: M(x; y; z)
II. Biểu thức tọa độ của các phép toán của vecto
- Định lí: Trong không gian Oxyz, cho hai vecto
, ta có:
a)
b) ;
c) .
Ví dụ 1. Cho
a) Tính ;
b) ;
c) .
Lời giải:
a) ;
b) Ta có: = ( 2.4; 2. (-2); 2.0) = ( 8; - 4; 0).
c) Ta có: = ( 2 – 8; -3 + 4; 4 - 0) = (- 6; 1; 4)
- Hệ quả:
a) Cho hai vecto , ta có:
.
b) Vecto có tọa độ ( 0; 0; 0).
c) Với thì hai vecto cùng phương khi và chỉ khi tồn tại số k sao cho:
d) Cho
+
+ Toạ độ trung điểm M của đoạn thẳng AB:
Ví dụ 2. Cho . Tìm m và n để
Lời giải:
Để
Vậy m = 2 và n = 1.
Ví dụ 3. Các cặp vecto sau có cùng phương không?
a) ;
b) .
Lời giải:
a) Ta thấy
Do đó, hai vecto trên không cùng phương.
b) Ta thấy: nên hai vecto trên cùng phương.
Ví dụ 4. Cho hai điểm A( - 3; 4; 0) và B( -1; 0; 8).
a) Tính ;
b) Tìm tọa độ trung điểm M của AB.
Lời giải:
a) Ta có: = ( -1 + 3; 0 - 4; 8 -0) = ( 2; -4; 8).
b) Tọa độ trung điểm M của AB là:
III. Tích vô hướng.
1. Biểu thức tọa độ của tích vô hướng.
- Định lí:
Trong không gian Oxyz, tích vô hướng của hai vecto
được xác định bởi công thức:
Ví dụ 5. Cho . Tính ?
Lời giải:
Ta có: = 1.1 + ( -3). 2 + 4.1 = -1
2. Ứng dụng
a) Độ dài của một vecto.
Cho vecto .
Ta biết rằng: hay . Do đó,
b) Khoảng cách giữa hai điểm.
Trong khong gian Oxyz, cho hai điểm A(xA ; yA ; zA)
và B(xB; yB ; zB). Khi đó, khoảng cách giữa hai điểm A và B chính là độ dài của vecto . Do đó, ta có:
c) Góc giữa hai vecto.
Nếu là góc góc giữa hai vecto và với thì
Từ đó, suy ra
Ví dụ 6. Cho tam giác ABC có A(2; 3; 1); B( 2; 1; 0); C( 0; -1; 2).
a) Tính AB; AC
b) Tính cosin của góc A.
Lời giải:
a) Ta có:
b) Ta có:
Cosin của góc A là:
IV. Phương trình mặt cầu
- Định lí.
Trong không gian Oxyz, mặt cầu (S) tâm I(a; b; c) bán kính r có phương trình là:
( x – a)2 + (y – b)2 + (z – c)2 = r2
- Nhận xét. Phương trình mặt cầu nói trên có thể viết dưới dạng:
x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với d = a2 + b2 + c2 – r2
Từ đó, ta chứng minh được rằng phương trình dạng:
x2 + y2 + z2 + 2Ax + 2By + 2Cz + D = 0 với điều kiện A2 + B2 + C2 – D > 0 là
phương trình mặt cầu có tâm I( -A; -B; - C) có bán kính .
Ví dụ 7. Tìm tâm và bán kính của mặt cầu có phương trình sau đây:
a) x2 + y2 + z2 – 4x + 2y - 1 = 0;
b) x2 + y2 + z2 – 8x – 2y + 2z + 2 = 0
Lời giải:
a) Ta có: a = 2; b = -1; c = 0; d = -1
Tâm mặt cầu là I(2; -1; 0) và bán kính
b) Ta có: a = 4; b = 1; c = -1; d = 2
Tâm mặt cầu là I( 4; 1; -1) và bán kính