Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

20/07/2024 3,059

Trong không gian với hệ tọa độ Oxyz, cho các điểm A (2;0;0), B (0;3;0), C (0;0;6), D (1;1;1). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểm O, A, B, C, D?

A. 

B. 10 

C. 

Đáp án chính xác

D. 5.

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Chọn C

Phương trình mặt phẳng

 

Ta thấy 4 điểm A, B, C, D đồng phẳng (do D (ABC)).

Chọn 3 trong 5 điểm có

 

Chọn 3 trong 4 điểm đồng phẳng A, B, C, D có

Vậy có 10 - 4 + 1 = 7mặt phẳng phân biệt đi qua 5 điểm đã cho.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho đường thẳng d:x-11=y-1=z-21và mặt phẳng (P): 2x-y-2z+1=0. Đường thẳng nằm trong (P), cắt và vuông góc với d có phương trình là:

Xem đáp án » 05/03/2022 33,374

Câu 2:

Trong không gian Oxyz, cho đường thẳng  d:x+12=y-11=z-23và mặt phẳng (P): x-y-z-1=0. Phương trình đường thẳng Δ đi qua A (1;1;-2), song song với mặt phẳng (P) và vuông góc với đường thẳng d là:

Xem đáp án » 05/03/2022 17,792

Câu 3:

Trong không gian Oxyz, mặt phẳng (α) đi qua M (1;1;4) cắt các tia Ox, Oy, Oz lần lượt tại A, B, C phân biệt sao cho tứ diện OABC có thể tích nhỏ nhất. Tính thể tích nhỏ nhất đó.

Xem đáp án » 05/03/2022 13,936

Câu 4:

Trong không gian Oxyz, cho hai điểm M (2;2;1), N(-83;43;83) . Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác OMN và tiếp xúc với mặt phẳng (Oxz).

Xem đáp án » 05/03/2022 11,456

Câu 5:

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A (1;1;0), B (0;-1;2). Biết rằng có hai mặt phẳng cùng đi qua hai điểm A, O và cùng cách B một khoảng bằng 3. Véctơ nào trong các véctơ dưới đây là một véctơ pháp tuyến của một trong hai mặt phẳng đó.

Xem đáp án » 05/03/2022 10,922

Câu 6:

Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9, điểm A (0; 0; 2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là:

Xem đáp án » 05/03/2022 9,691

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;1;1). Viết phương trình mặt phẳng (P) đi qua M và cắt ba tia

Ox, Oy, Oz lần lượt tại các điểm A, B, C khác gốc O sao cho thể tích khối tứ diện OABC nhỏ nhất.

Xem đáp án » 05/03/2022 6,922

Câu 8:

Trong không gian Oxyz, Cho mặt phẳng (R): x+y-2z+2=0 và đường thẳng 1:x2=y1=z-1-1.Đường thẳng Δ2 nằm trong mặt phẳng (R) đồng thời cắt và vuông góc với đường thẳng Δ1 có phương trình là:

Xem đáp án » 05/03/2022 6,815

Câu 9:

Cho hình chóp S. ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng a2và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa hai mặt phẳng (SBD) và (ABCD). Nếu tan α = 2 thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng:

Xem đáp án » 05/03/2022 6,700

Câu 10:

Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;0;-1) và mặt phẳng (P): x+y-z-3=0. Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 172 . Tính bán kính R của mặt cầu (S).

Xem đáp án » 05/03/2022 5,752

Câu 11:

Trong không gian với hệ tọa độ Oxy, cho mặt phẳng (P): 2y-z+3=0 và điểm A (2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 43 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng:

Xem đáp án » 05/03/2022 5,290

Câu 12:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;0;1), B (0;1;-1). Hai điểm D, E thay đổi trên các đoạn OA, OB sao cho đường thẳng DE chia tam giác OAB thành hai phần có diện tích bằng nhau. Khi DE ngắn nhất thì trung điểm của đoạn DE có tọa độ là:

Xem đáp án » 05/03/2022 4,628

Câu 13:

Trong hệ tọa độ Oxyz cho A (3;3;0), B (3;0;3), C (0;3;3). Mặt phẳng (P) đi qua O, vuông góc với mặt phẳng (ABC)

sao cho mặt phẳng (P) cắt các cạnh AB, AC tại các điểm M, N thỏa mãn thể tích tứ diện OAMN nhỏ nhất. Mặt phẳng (P) có phương trình:

Xem đáp án » 05/03/2022 3,780

Câu 14:

Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân giác trong góc A là: x1=y-6-4=z-6-3 . Biết rằng điểm M (0;5;3) thuộc đường thẳng AB và điểm N (1;1;0) thuộc đường thẳng AC. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng AC.

Xem đáp án » 05/03/2022 3,518

Câu 15:

Trong không gian Oxyz, phương trình mặt phẳng (P) song song và cách đều hai đường thẳng d1:x-2-1=y1=z1d2:x2=y-1-1=z-2-1 là?

Xem đáp án » 05/03/2022 3,445

LÝ THUYẾT

1. Hệ tọa độ trong không gian

1.1. Tọa độ của điểm và của vecto

1.1.1. Hệ tọa độ

Trong không gian, xét ba trục tọa độ x’Ox; y’Oy; z’Oz  vuông góc với nhau từng

đôi một và chung một điểm gốc O. Gọi i;j;k lần lượt là các vectơ đơn vị, trên các trục x’Ox; y’Oy; z’Oz.

Hệ ba trục như vậy gọi là hệ trục tọa độ Đề- các vuông góc Oxyz trong không gian,

hay đơn giản gọi là hệ trục tọa độ Oxyz.

Điểm O được gọi là gốc tọa độ.

Các mặt phẳng (Oxy); (Oyz); (Ozx) đôi một vuong góc với nhau được gọi là các mặt phẳng tọa độ.

Không gian với hệ tọa độ Oxyz còn gọi là không gian Oxyz.

- Vì i;j;k là các vecto đơn vị đôi một vuông góc với nhau nên:

i2=j2=k2=  1.

1.1.2. Tọa độ của một điểm

- Trong không gian Oxyz, cho một điểm M tùy ý. Vì ba vecto i;j;k không đồng

phẳng nên có một bộ ba số (x; y; z) duy nhất sao cho:

OM=x.i +y.j+z.k

- Ngược lại, với bộ ba số (x; y; z) ta có một điểm M duy nhất trong không gian thỏa mãn hệ thức OM=x.i+y.j+z.k.

- Ta gọi bộ ba số (x; y; z) là tọa độ của điểm M đối với hệ trục tọa độ Oxyz đã cho và viết: M = ( x; y; z) hoặc M (x; y; z).

1.1.3. Tọa độ của vecto

- Trong không gian Oxyz cho vecto a, khi đó luôn tồn tại duy nhất bộ ba số (a1; a2 ; a3) sao cho a=a1.i+a2.j+a3.k.

Ta gọi bộ ba số (a1; a2 ; a3) là tọa độ của vecto  đối với hệ tọa độ Oxyz cho trước a và viết a = (a1; a2 ; a3) hoặc a(a1; a2 ; a3).

 - Nhận xét : Trong hệ tọa độ Oxyz, tọa độ của điểm M chính là tọa độ của vecto OM.

Ta có: M(x; y; z) OM(x;y;z)

1.2. Biểu thức tọa độ của các phép toán của vecto        

- Định lí:  Trong không gian Oxyz, cho hai vecto

a =(a1;a2;a3),b =(b1;b2;b3),kR, ta có:

a) a+b=(a1+b1;a2+b2;a3+b3)

b) a-b=(a1-b1;a2-b2;a3-b3);

c) ka=(ka1;ka2;ka3).

Ví dụ 1. Cho u(2;-3; 4);v(  4;-2;0)

a) Tính u+v;

b) 2v;

c) u-2v.

Lời giải:

a) u+v=(2+  4;-3-2; 4+0)=(6;-5;  4) ;

b) Ta có: 2v = ( 2.4; 2. (-2); 2.0) = ( 8; - 4; 0).

c) Ta có: u-2v = ( 2 – 8; -3 + 4; 4 - 0) = (- 6; 1; 4)

- Hệ quả:

a) Cho hai vecto a =(a1;a2;a3),b =(b1;b2;b3), ta có:

a=b{a1=b1a2=b2a3=b3.

b) Vecto 0 có tọa độ ( 0; 0; 0).

c) Với b0 thì hai vecto a;b cùng phương khi và chỉ khi tồn tại số k sao cho:

a =kb(kR)

{a1=kb1a2=kb2a3=kb3a1b1=a2b2=a3b3,(b1,b2,b30)

d) Cho A(xA;yA;zA),B(xB;yB;zB)

+ AB =(xB-xA;yB-yA;zB-zA)        

+ Toạ độ trung điểm M của đoạn thẳng ABM(xA+xB2;yA+yB2;zA+zB2)

Ví dụ 2. Cho u(2m; 3;-1);v(4;  3;n-2). Tìm m và n để u=v

Lời giải:

Để u=v

Ôn tập Toán 12 Chương 3 Hình học (ảnh 1)

Vậy m = 2 và n = 1.

Ví dụ 3. Các cặp vecto sau có cùng phương không?

a) u(  2;3;7);v(-4;-6;  14);

b) a( 1; 0;  2);b(-3;0;-6).

Lời giải:

a) Ta thấy 2-4=3-6714

Do đó, hai vecto trên không cùng phương.

b) Ta thấy: b=-3a nên hai vecto trên cùng phương.

Ví dụ 4. Cho hai điểm A( - 3; 4; 0) và B( -1; 0; 8).

a) Tính  AB;

b) Tìm tọa độ trung điểm M của AB.

Lời giải:

a) Ta có: AB = ( -1 + 3; 0 - 4; 8 -0) = ( 2; -4; 8).

b)  Tọa độ trung điểm M của AB là:

{xM=-3+(-1)2=-2yM=4+ 02=2zM=0+  82= 4M(-2;2;4)

1.3. Tích vô hướng.

1.3.1. Biểu thức tọa độ của tích vô hướng.

- Định lí:

Trong không gian Oxyz, tích vô hướng của hai vecto a =(a1;a2;a3),b =(b1;b2;b3) được xác định bởi công thức:

a.b=a1.b1+a2.b2+a3.b3

Ví dụ 5. Cho a(1;-3;4);b(1;2;1). Tính a.b?

Lời giải:

Ta có:  a.b =  1.1 + ( -3). 2 + 4.1 = -1

1.3.2. Ứng dụng

a) Độ dài của một vecto.

Cho vecto a =(a1;a2;a3).

Ta biết rằng: |a|2=a2 hay |a|=a2. Do đó, |a|=a12+a22+a22

b) Khoảng cách giữa hai điểm.

Trong khong gian Oxyz, cho hai điểm A(xA ; yA ; zA)

và B(xB; yB ; zB). Khi đó, khoảng cách giữa hai điểm A và B chính là độ dài của

vecto AB. Do đó, ta có:

AB=|AB|=(xB-xA)2+(yB-yA)2+(zB-zA)2.

c) Góc giữa hai vecto.

Nếu φ là góc góc giữa hai vecto a=(a1;a2;a3) b=(b1;b2;b3) với a;b0 thì cos(a,b)=a.b|a|.|b|=a1b1+a2b2+a3b3a12+a22+a32.b12+b22+b32

 Từ đó, suy ra aba1b1+a2b2+a3b3=0

Ví dụ 6. Cho tam giác ABC có A(2; 3; 1); B( 2; 1; 0); C( 0; -1; 2).

a) Tính AB; AC

b) Tính cosin của góc A.

Lời giải:

a) Ta có:

 AB=(2-2)2+(1-3)2+(0-1)2=5 AC=(0-2)2+(-1-3)2+(2-1)2=21

b) Ta có: AB(0;-2;-1);AC(-2;-4;1)

Cosin của góc A là:

cosA=cos(AB;AC)=0.(-2)+(-2).(-4)+(-1).15.21=7105

1.4. Phương trình mặt cầu

- Định lí.

Trong không gian Oxyz, mặt cầu (S) tâm I(a; b; c) bán kính r có phương trình là:

( x – a)2 + (y – b)2 + (z – c)2 = r2

- Nhận xét. Phương trình mặt cầu nói trên có thể viết dưới dạng:

x2  + y2 + z2 – 2ax – 2by – 2cz + d = 0 với d = a2 + b2 + c2 – r2

Từ đó, ta chứng minh được rằng phương trình dạng:

x2  + y2 + z2 + 2Ax + 2By + 2Cz + D = 0 với điều kiện A2 + B2 + C2 – D > 0 là phương trình mặt cầu có tâm I( -A; -B; - C) có bán kính r=A2+B2+C2-D.

Ví dụ 7. Tìm tâm và bán kính của mặt cầu có phương trình sau đây:

a) x2  + y2 + z2 – 4x + 2y - 1 = 0;

b) x2  + y2 + z2 – 8x – 2y + 2z + 2 = 0

Lời giải:

a) Ta có:  a = 2; b = -1; c = 0; d = -1

Tâm mặt cầu là I(2; -1; 0) và bán kính R=22+(-1)2+ 02

Câu hỏi mới nhất

Xem thêm »
Xem thêm »