Chọn kết luận đúng về phương trình bậc hai (hệ số thực) trên tập số phức:
A. Luôn có 2 nghiệm phân biệt.
B. Vô nghiệm nếu .
C. Luôn có ít nhất 1 nghiệm.
D. Luôn có 2 nghiệm thực phân biệt.
Đáp án cần chọn là: C
Phương trình bậc hai trên tập số phức luôn có ít nhất 1 nghiệm nên C đúng.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho phương trình bậc hai . Biệt thức của phương trình được tính bởi:
Trong C, cho phương trình . Gọi , ta xét các mệnh đề sau:
Trong các mệnh đề trên
1. Căn bậc hai của số thực âm
Tương tự căn bậc hai của một số thực dương, từ i2 = –1, ta nói i là một căn bậc hai của – 1; – i cũng là một căn bậc hai của –1 vì (–i)2 = –1.
Từ đó, ta xác định được căn bậc hai của các số thực âm, chẳng hạn.
Căn bậc hai của –16 là vì
Căn bậc hai của –5 là vì
Tổng quát, các căn bậc hai của số thực a âm là
2. Phương trình bậc hai với hệ số thực
Cho phương trình bậc hai ax2 + bx + c = 0 với a; b ; c
Xét biệt số ∆ = b2 – 4ac của phương trình. Ta thấy:
· Khi ∆ = 0, phương trình có một nghiệm thực
· Khi ∆ > 0, có hai căn bậc hai thực của ∆ là và phương trình có hai nghiệm thực phân biệt, được xác định bởi công thức
· Khi ∆ < 0, ta có hai căn bậc hai thuần ảo của ∆ là . Khi đó, phương trình có hai nghiệm phức được xác định bởi công thức
– Nhận xét:
Trên tập hợp số phức, mọi phương trình bậc hai đều có hai nghiệm (không nhất thiết phân biệt).
Tổng quát: Mọi phương trình bậc n :
a0.xn + a1.xn – 1 + ….+ an–1.x + an = 0
Trong đó; a0 ; a1;…..; an đều có n nghiệm phức (các nghiệm không nhất thiết phân biệt).