Chủ nhật, 19/05/2024
IMG-LOGO

Câu hỏi:

15/03/2022 1,392

Tìm phần thực của số phức 25iz, biết rằng z2-i+4-3iz¯=26+6i

A. 3.

B. -2.

C. – 4.

Đáp án chính xác

D. 5.

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Chọn C.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 200k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số phức z thỏa mãn z=2 và z2 là số thuần ảo ?

Xem đáp án » 15/03/2022 38,674

Câu 2:

Cho số phức z thỏa mãn: 3z+2z¯=4-i2. Môđun của số phức z là

Xem đáp án » 15/03/2022 16,139

Câu 3:

Tìm số phức z , biết z-2+3iz¯=1-9i

Xem đáp án » 15/03/2022 14,926

Câu 4:

Tìm tất cả số phức z thỏa z2=z2+z¯

Xem đáp án » 15/03/2022 10,630

Câu 5:

Số phức z thỏa mãn phương trình 2-3iz+4+iz¯=-1+3i2có phần thực và phần ảo lần lượt là:

Xem đáp án » 15/03/2022 7,429

Câu 6:

Có bao nhiêu số phức z thỏa |z|  = 2 z3 là số thực là:

Xem đáp án » 15/03/2022 5,149

Câu 7:

Cho số phức z thỏa mãn hệ thức: 2-i1+i+z¯=4-2i. Tính mô-đun của z.

Xem đáp án » 15/03/2022 5,007

Câu 8:

Giá trị của i105+ i23+ i20- i34 là ?

Xem đáp án » 15/03/2022 4,330

Câu 9:

Với mọi số ảo z, số z2 + |z|2 là :

Xem đáp án » 15/03/2022 4,176

Câu 10:

Có bao nhiêu số phức z thỏa mãn z2 = | z3|.

Xem đáp án » 15/03/2022 4,063

Câu 11:

Tìm nghiệm của phương trình: 1+2iz¯+2-iiz+1i=0

Xem đáp án » 15/03/2022 2,135

Câu 12:

Cho số phức z thỏa mãn ( 3+ i) z  = 2. Tính mô-đun của số phức w = z + 25 - 45i.

Xem đáp án » 15/03/2022 1,972

Câu 13:

Tìm nghiệm của phương trình 2z-1z+i=1+i

Xem đáp án » 15/03/2022 1,466

Câu 14:

c định tập hợp các điểm trong mặt phẳng biểu diễn số phức z thoả điều kiện |z + 1 – 3i| 4.

Xem đáp án » 15/03/2022 1,415

Câu 15:

Tính tổng các phần ảo của các số phức z thỏa mãn phương trình z-2z¯3=8

Xem đáp án » 15/03/2022 1,211

LÝ THUYẾT

1. Số phức

1.1. Số i.

Số i là số thỏa mãn: i2 = – 1.

1.2. Định nghĩa số phức

Mỗi biểu thức dạng a + bi , trong đó a;bR; i2 = – 1 được gọi là một số phức.

Đối với số phức z = a + bi, ta nói: a là phần thực, b là phần ảo của z.

Tập hợp các số phức kí hiệu là C.

Ví dụ 1. Các số sau là những số phức: 2 – 3i; –8 + 4i; 5-i2;3+2i.

Ví dụ 2.

Số phức 6 – i có phần thực là 6, phần ảo là – 1.

1.3. Số phức bằng nhau

Định nghĩa: Hai số phức bằng nhau nếu phần thực và phần ảo của chúng tương ứng bằng nhau :

a + bi = c + di  a = c và b = d.

Ví dụ 3. Tìm các số thực x và y biết :

(2x – 1) + (y – 2)i = 3 + (4 – y)i

Lời giải :

Ta có : (2x – 1) + (y – 2)i = 3 + (4 – y)i

{2x-1= 3y-2=  4-y{x=2y= 3.

Vậy x = 2 và y = 3.

– Chú ý :

a) Mỗi số thực a được coi là một số phức với phần ảo bằng 0 : a = a + 0i.

Như vậy, mỗi số thực cũng là một số phức. Ta có : RC.

b) Số phức 0 + bi được gọi là số thuần ảo và viết đơn giản là bi : bi = 0 + bi

Đặc biệt: i = 0 + 1.i

Số i được gọi là đơn vị ảo.

Ví dụ 4. Số phức z có phần thực là -12 và phần ảo là 12 là z=-12+12i.

1.4. Biểu diễn hình học số phức

Điểm M(a ; b) trong một hệ tọa độ vuông góc của mặt phẳng được gọi là điểm biểu diễn số phức z = a + bi.

 

Ví dụ 5.

Điểm A biểu diễn số phức 2 – 2i

Điểm B biểu diễn số phức 4.

Điểm C biểu diễn số phức – 2.

Điểm D biểu diễn số phức 2 + 3i.

Điểm E biểu diễn số phức 2.

Điểm F biểu diễn số phức – 3 + 2i.

Điểm G biểu diễn số phức –2 – 3i.

1.5. Môđun của số phức.

Giả sử số phức z = a + bi được biểu diễn bởi điểm M(a ; b) trên mặt phẳng tọa độ.

Độ dài của vecto OM được gọi là môđun của số phức z và kí hiệu là |z|.

Vậy |z|=|OM| hay |a+bi|=|OM|.

Ta thấy : |a+bi|=a2+b2.

Ví dụ 6.

|-2+ 3i|=(-2)2+  32=13|2-4i|=(2)2+(-4)2=18

1.6. Số phức liên hợp

– Định nghĩa : Cho số phức z = a + bi. Ta gọi a – bi là số phức liên hợp của z và kí hiệu là z¯=a-bi.

Ví dụ 7.

Nếu z = –3 + 5i thì z¯=-3-  5i.

Nếu z = –4 + 4i thì z¯=-4-4i.

– Nhận xét :

+ Trên  mặt phẳng tọa độ các điểm biểu diễn z và z¯ đối xứng nhau qua trục Ox.

+ Từ định nghĩa ta có : z¯¯=z;|z¯|=|z|.

2. Cộng, trừ và nhân số phức.

2.1. Phép cộng và phép trừ

– Phép cộng và phép trừ hai số phức được thực hiện theo quy tắc cộng, trừ đa thức.

Tổng quát:

(a + bi) + (c + di) = (a + c) + (b + d).i

(a + bi) – (c + di) = (a – c) + (b – d).i

2.2. Phép nhân

– Phép nhân hai số phức được thực hiện theo quy tắc nhân hai đa thức, rồi thay i2 = – 1 vào kết quả.

– Tổng quát:

(a + bi).(c + di) = ac + adi + bci + bdi2 = ac + adi + bci – bd

Vậy (a + bi). (c + di) = (ac – bd) + (ad + bc).i

Chú ý: Phép cộng và phép nhân số phức có tất cả các tính chất của phép cộng và phép nhân các số thực.

3. Phép chia số phức

3.1. Tổng và tích của hai số phức liên hợp

Cho số phức z = a + bi, ta có:

z+z¯= (a + bi) + (a – bi) = 2a;

z.z¯ = (a + bi). (a – bi) = a2 – (bi)2 = a2 + b2|z|2

+ Tổng của một số phức với số phức liên hợp của nó bằng hai lần phần thực của số phức đó.

+ Tích của một số phức với số phức liên hợp của nó bằng bình phương mô đun của số phức đó.

Vậy tổng và tích của hai số phức liên hợp là một số thực.

3.2. Phép chia hai số phức

Chia số phức c + di cho số phức a + bi khác 0 là tìm số phức z sao cho

 c + di = (a + bi).z. Số phức z được gọi là thương trong phép chia c + di cho a + bi và kí hiệu là: z=c+dia+bi.

Ví dụ 8. Thực hiện phép chia 4 – 6i cho 1 + i.

Lời giải:

Giả sử z=4-6i1+i.

Theo định nghĩa ta có: (1 + i).z = 4 – 6i.

Nhân cả hai vế với số phức liên hợp của 1 + i ta được:

(1 – i) .(1 + i).z = (1 – i).(4 – 6i)

Suy ra: 2z = – 2 – 10i

Do đó, z = –1 – 5i

Vậy 4-6i1+i=-1-5i.

Tổng quát:

Giả sử z=c+dia+bi. Theo định nghĩa phép chia số phức, ta có:

(a + bi).z = c + di

Nhân cả hai vế với số phức liên hợp của a + bi, ta được:

(a – bi)(a + bi).z = (a – bi)(c + di)

Hay (a2 + b2).z = (ac + bd) + (ad – bc).i

Nhân cả hai vế với số thực 1a2+b2 ta được:

z=1a2+b2.[(ac+bd)+(ad-bc)i]

Vậy c+dia+bi=ac+bda2+b2+ad-bca2+b2.i.

– Chú ý. Trong thực hành để tính thương c+dia+bi, ta nhân cả tử và mẫu với số phức liên hợp của a + bi.

Ví dụ 9. Thực hiện phép chia 2 – 4i cho 2 + i.

Lời giải:

2-4i2+i=(2-4i).(  2-i)(2+i)(2-i)=[2.2-(-4).(-1)]+[2.(-1)+(-4).2]i22+ 12=-10i5=-2i

4. Phương trình bậc hai với hệ số thực.

4.1. Căn bậc hai của số thực âm

Tương tự căn bậc hai của một số thực dương, từ i2 = –1, ta nói i là một căn bậc hai của – 1; –i cũng là một căn bậc hai của –1 vì (– i)2 = –1.

Ta đó, ta xác định được căn bậc hai của các số thực âm, chẳng hạn.

Căn bậc hai của –16 là ±4i vì (±4i)2=-16

Căn bậc hai của –5 là ±5i vì (±5i)2=-5

Tổng quát, các căn bậc hai của số thực a âm ±i|a|.

4.2. Phương trình bậc hai với hệ số thực

Cho phương trình bậc hai ax2 + bx + c = 0 với a; b ; cR;a  0.

Xét biệt số ∆ = b2 – 4ac của phương trình. Ta thấy:

·    Khi ∆ = 0, phương trình có một nghiệm thực x=-b2a.

·    Khi ∆ > 0, có hai căn bậc hai thực của ∆ là ±Δ phương trình có hai nghiệm thực phân biệt, được xác định bởi công thức x1;2=-b±Δ 2a.

·    Khi ∆ < 0, ta có hai căn bậc hai thuần ảo của ∆ là ±i|Δ |. Khi đó, phương trình có hai nghiệm phức được xác định bởi công thức x1;2=-b±i|Δ |2a.

– Nhận xét:

Trên tập hợp số phức, mọi phương trình bậc hai đều có hai nghiệm (không nhất thiết phân biệt).

Tổng quát: Mọi phương trình bậc n (n1):

a0.xn + a1.xn–1 + ….+ an–1.x + an = 0

Trong đó; a0 ; a1;…..; an C;a00 đều có n nghiệm phức (các nghiệm không nhất thiết phân biệt).

Câu hỏi mới nhất

Xem thêm »
Xem thêm »