Xét tính tăng giảm của dãy số biết:
A. Dãy số tăng
B. Dãy số giảm
C. Dãy số không tăng không giảm
C. Dãy số không tăng không giảm
Xét hiệu:
Kết luận dãy số là dãy số giảm.
Chọn đáp án B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Với mỗi số nguyên dương n, gọi . Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.
I. Phương pháp quy nạp toán học
Để chứng minh những mệnh đề liên quan đến số tự nhiên là đúng với mọi n mà không thể thử trực tiếp được thì có thể làm như sau:
- Bước 1. Kiểm tra mệnh đề đúng với n = 1.
- Bước 2. Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 1 (gọi là giả thiết quy nạp), chứng minh rằng nó cũng đúng với n = k + 1.
Đó là phương pháp quy nạp toán học, hay còn gọi tắt là phương pháp quy nạp.
II. Ví dụ áp dụng
- Ví dụ 1. Chứng minh với mọi số tự nhiên n ≥ 1 ta có:
(*)
Lời giải:
Bước 1: Với n = 1 ta có:
Vế trái = 1 và vế phải = 1
Vậy hệ thức đúng với n = 1.
Bước 2: Giả sử hệ thức đúng với một số tự nhiên bất kì n = k ≥ 1 tức là:
(1)
Ta cần chứng minh hệ thức đúng với n = k + 1, tức là:
(2)
Thật vậy:
Vế trái = 1 + 2 + 3+ … + k + k + 1
(Do đẳng thức (1))
Vậy hệ thức đã cho đúng với mọi số tự nhiên n ≥ 1.
- Ví dụ 2. Chứng minh rằng với , ta có bất đẳng thức
Lời giải:
- Với n = 1, bất đẳng thức cho trở thành: (đúng).
Vậy bất đẳng thức cho đúng với n = 1.
- Giả sử bất đẳng thức cho đúng với mọi số tự nhiên n = k ≥ 1, tức là :
(1)
-Ta chứng minh bất đẳng thức cho đúng với n = k + 1, tức là :
(2)
Thật vậy, ta có :
(theo (1))
Ta chứng minh:
(do hai vế đều dương)
Hay (2k + 1).(2k + 3) < (2k + 2)2
4k^2 + 6k + 2k + 3 < 4k^2 + 8k + 4
3 < 4 (luôn đúng)
Vậy bất đẳng thức đã cho đúng với mọi số tự nhiên n ≥ 1.
- Chú ý:
Nếu phải chứng minh mệnh đề là đúng với mọi số tự nhiên n ≥ p (p là một số tự nhiên) thì:
+ Ở bước 1, ta phải kiểm tra mệnh đề đúng với n = p;
+ Ở bước 2, ta giả thiết mệnh đề đúng với số tự nhiên bất kì n = k ≥ p và phải chứng minh rằng nó cũng đúng với n = k + 1.