Chủ nhật, 08/06/2025
IMG-LOGO

Câu hỏi:

22/07/2024 2,359

Cho dãy số un=   7n+55n+7. Tìm mệnh đề đúng?

A. Dãy số tăng và bị chặn.

Đáp án chính xác

B. Dãy số giảm và bị chặn.

C. Dãy số tăng và bị chặn dưới

D. Dãy số giảm và bị chặn trên.

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Công thức un được viết lại: un=752455n+7 

Xét hiệu số:un+1un=752455n+1+7752455n+7

=24515n+715n+1+7>0   n1. 

un+1>un. Vậy dãy số (un) là dãy số tăng.

Ta có: 0<15n+7112    n1

0>2455n+725 

 75>752455n+775251un<75. 

Suy ra (un) là một dãy số bị chặn.

Kết luận (un) là một dãy số tăng và bị chặn.

Chọn đáp án A.

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng với mọi số nguyên n, ta có:

 1.4+2.7++n3n+1=nn+12   (1)

Xem đáp án » 27/03/2022 6,783

Câu 2:

Cho dãy số (un) có số hạng tổng quát un=2n+1n+2. Số 16784 là số hạng thứ mấy?

Xem đáp án » 27/03/2022 5,828

Câu 3:

Cho dãy số (un) xác định bởi u1=11un+1=10un+19n . Tìm số hạng tổng quát un theo n

Xem đáp án » 27/03/2022 3,592

Câu 4:

Cho dãy số (un) biết un=5nn2. Mệnh đề nào sau đây đúng?

Xem đáp án » 27/03/2022 3,219

Câu 5:

Xét tính tăng giảm của dãy số (un) với un=n2n

Xem đáp án » 27/03/2022 3,194

Câu 6:

Xét tính bị chặn của dãy số (un) biết: un=11.2+12.3+...+1nn+1

Xem đáp án » 27/03/2022 2,959

Câu 7:

Cho dãy số (un) biết un=12+122+132+...+1n2. Mệnh đề nào sau đây đúng ?

Xem đáp án » 27/03/2022 2,720

Câu 8:

Với mỗi số nguyên dương n, gọi un  = 9n  - 1. Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.

Xem đáp án » 27/03/2022 1,514

Câu 9:

Xét tính tăng hay giảm và bị chặn của dãy số : un=2n1n+3;nN*

Xem đáp án » 27/03/2022 706

Câu 10:

Tìm công thức tính số hạng tổng quát un theo n của dãy số sau u1=3un+1=un+2

Xem đáp án » 27/03/2022 584

Câu 11:

Xét tính tăng giảm của dãy số (un) biết: un=  1n  2

Xem đáp án » 27/03/2022 509

Câu 12:

Chứng minh rằng với mọi số tự nhiên n2, ta luôn có: 2n +1 >  2n + 3   (*)

Xem đáp án » 27/03/2022 505

Câu 13:

Chứng minh bằng phương pháp quy nạp n3 +11n  chia hết cho 6.

Xem đáp án » 27/03/2022 406

Câu 14:

Xét tính tăng giảm của dãy số (un)  biết: un=n1n+1

Xem đáp án » 27/03/2022 403

Câu 15:

Xét tính tăng, giảm và bị chặn của dãy số (un), biết: un=2n133n2

Xem đáp án » 27/03/2022 362

LÝ THUYẾT

I. Phương pháp quy nạp toán học

Để chứng minh những mệnh đề liên quan đến số tự nhiên n  *là đúng với mọi n mà không thể thử trực tiếp được thì có thể làm như sau:

- Bước 1. Kiểm tra mệnh đề đúng với n = 1.

- Bước 2. Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 1 (gọi là giả thiết quy nạp), chứng minh rằng nó cũng đúng với n = k + 1.

Đó là phương pháp quy nạp toán học, hay còn gọi tắt là phương pháp quy nạp.

II. Ví dụ áp dụng

- Ví dụ 1. Chứng minh với mọi số tự nhiên n ≥ 1 ta có:

  1  +  2+3+...+​ n=n(n+ ​1)2 (*)

Lời giải:

Bước 1: Với n = 1 ta có:

Vế trái = 1 và vế phải = 1

Vậy hệ thức đúng với n = 1.

Bước 2: Giả sử hệ thức đúng với một số tự nhiên bất kì n = k ≥ 1  tức là:

1  +  2+3+...+​ k=   k(k+ ​1)2  (1)

Ta cần chứng minh hệ thức đúng với n = k + 1, tức là:

  1  +  2+3+...+​ k  +  k+1=(k+1)(k+2)2(2)

Thật vậy:

Vế trái = 1 + 2 + 3+ … + k + k + 1

k(k  +​  1)2  +k+​ 1   (Do đẳng thức (1))

=  (k+1).k2  +​ 1  =(k+1).(k+2)2  =VP

Vậy hệ thức đã cho đúng với mọi số tự nhiên n ≥ 1.

- Ví dụ 2. Chứng minh rằng với   n  1, ta có bất đẳng thức

1.3.5....(2n1)2.4.6...2n   <  12n+1

Lời giải:

- Với n = 1, bất đẳng thức cho trở thành:  12  <  13 (đúng).

Vậy bất đẳng thức cho đúng với n = 1.

- Giả sử bất đẳng thức cho  đúng với  mọi số tự nhiên n = k ≥ 1, tức là :

    1.3.5....(2k1)2.4.6...2k   <  12k+1  (1)

-Ta chứng minh bất đẳng thức cho đúng với n = k + 1, tức là :

  1.3.5....(2k1)(2k+1)2.4.6...2k(2k+​ 2)   <  12k+3 (2)

Thật vậy, ta có :

 VT(2)=1.3.5....(2k1)2.4.6...2k.2k+12k+2   <  12k+1.2k+12k+2  =2k+ ​12k+2 (theo (1))

Ta chứng minh:

  2k+​  12k ​+​ 2  <  12k+3  2k+1.  2k​​ +​  3<2k+2 (do hai vế đều dương)

Hay (2k + 1).(2k + 3) < (2k + 2)2

4k^2 + 6k + 2k + 3 < 4k^2 + 8k + 4

 3 < 4 (luôn đúng)

Vậy bất đẳng thức đã cho đúng với mọi số tự nhiên n ≥ 1.

- Chú ý:

Nếu phải chứng minh mệnh đề là đúng với mọi số tự nhiên n ≥ p (p là một số tự nhiên) thì:

+ Ở bước 1, ta phải kiểm tra mệnh đề đúng với n = p;

+ Ở bước 2, ta giả thiết mệnh đề đúng với số tự nhiên bất kì n = k ≥ p và phải chứng minh rằng nó cũng đúng với n = k + 1.