IMG-LOGO

Câu hỏi:

20/07/2024 275

Tìm công thức tính số hạng tổng quát un theo n của  dãy số sau u1=2un+1=2un.

A. un=  n23n+10

B. un=2n

Đáp án chính xác

C. un=2n

D. un=n+2

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

* Ta có: 

u2=2u1=2.2=4=22u3=2u2=2.4=8=23u4=2u3=2.8=16=24u5=2u4=2.16=32=25

Từ các số hạng đầu tiên, ta dự đoán số hạng tổng quát un có dạng:  un=2n     n1 

* Ta dùng phương pháp chứng minh quy nạp để chứng minh cộng thức (*)  đúng.

Với n=1 ; có: u1 = 21 = 2 (đúng). Vậy (*) đúng với n= 1

Giả sử (*)  đúng với n= k , có nghĩa ta có: uk = 2k (2)

Ta cần chứng minh (*) đúng với n = k+1. Có nghĩa là ta phải chứng minh: uk+1 = 2k+ 1.

Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:

uk+1 = 2uk = 2. 2k  = 2k+1

Vậy (*) đúng với n = k+1.  Kết luận (*)  đúng với mọi số nguyên dương n.

Chọn đáp án B.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng với mọi số nguyên n, ta có:

 1.4+2.7++n3n+1=nn+12   (1)

Xem đáp án » 27/03/2022 6,729

Câu 2:

Cho dãy số (un) có số hạng tổng quát un=2n+1n+2. Số 16784 là số hạng thứ mấy?

Xem đáp án » 27/03/2022 5,784

Câu 3:

Cho dãy số (un) xác định bởi u1=11un+1=10un+19n . Tìm số hạng tổng quát un theo n

Xem đáp án » 27/03/2022 3,555

Câu 4:

Cho dãy số (un) biết un=5nn2. Mệnh đề nào sau đây đúng?

Xem đáp án » 27/03/2022 3,173

Câu 5:

Xét tính tăng giảm của dãy số (un) với un=n2n

Xem đáp án » 27/03/2022 3,114

Câu 6:

Xét tính bị chặn của dãy số (un) biết: un=11.2+12.3+...+1nn+1

Xem đáp án » 27/03/2022 2,902

Câu 7:

Cho dãy số (un) biết un=12+122+132+...+1n2. Mệnh đề nào sau đây đúng ?

Xem đáp án » 27/03/2022 2,682

Câu 8:

Cho dãy số un=   7n+55n+7. Tìm mệnh đề đúng?

Xem đáp án » 27/03/2022 2,322

Câu 9:

Với mỗi số nguyên dương n, gọi un  = 9n  - 1. Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.

Xem đáp án » 27/03/2022 1,478

Câu 10:

Xét tính tăng hay giảm và bị chặn của dãy số : un=2n1n+3;nN*

Xem đáp án » 27/03/2022 640

Câu 11:

Tìm công thức tính số hạng tổng quát un theo n của dãy số sau u1=3un+1=un+2

Xem đáp án » 27/03/2022 542

Câu 12:

Chứng minh rằng với mọi số tự nhiên n2, ta luôn có: 2n +1 >  2n + 3   (*)

Xem đáp án » 27/03/2022 469

Câu 13:

Xét tính tăng giảm của dãy số (un) biết: un=  1n  2

Xem đáp án » 27/03/2022 450

Câu 14:

Chứng minh bằng phương pháp quy nạp n3 +11n  chia hết cho 6.

Xem đáp án » 27/03/2022 366

Câu 15:

Xét tính tăng giảm của dãy số (un)  biết: un=n1n+1

Xem đáp án » 27/03/2022 357

LÝ THUYẾT

I. Phương pháp quy nạp toán học

Để chứng minh những mệnh đề liên quan đến số tự nhiên n  *là đúng với mọi n mà không thể thử trực tiếp được thì có thể làm như sau:

- Bước 1. Kiểm tra mệnh đề đúng với n = 1.

- Bước 2. Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 1 (gọi là giả thiết quy nạp), chứng minh rằng nó cũng đúng với n = k + 1.

Đó là phương pháp quy nạp toán học, hay còn gọi tắt là phương pháp quy nạp.

II. Ví dụ áp dụng

- Ví dụ 1. Chứng minh với mọi số tự nhiên n ≥ 1 ta có:

  1  +  2+3+...+​ n=n(n+ ​1)2 (*)

Lời giải:

Bước 1: Với n = 1 ta có:

Vế trái = 1 và vế phải = 1

Vậy hệ thức đúng với n = 1.

Bước 2: Giả sử hệ thức đúng với một số tự nhiên bất kì n = k ≥ 1  tức là:

1  +  2+3+...+​ k=   k(k+ ​1)2  (1)

Ta cần chứng minh hệ thức đúng với n = k + 1, tức là:

  1  +  2+3+...+​ k  +  k+1=(k+1)(k+2)2(2)

Thật vậy:

Vế trái = 1 + 2 + 3+ … + k + k + 1

k(k  +​  1)2  +k+​ 1   (Do đẳng thức (1))

=  (k+1).k2  +​ 1  =(k+1).(k+2)2  =VP

Vậy hệ thức đã cho đúng với mọi số tự nhiên n ≥ 1.

- Ví dụ 2. Chứng minh rằng với   n  1, ta có bất đẳng thức

1.3.5....(2n1)2.4.6...2n   <  12n+1

Lời giải:

- Với n = 1, bất đẳng thức cho trở thành:  12  <  13 (đúng).

Vậy bất đẳng thức cho đúng với n = 1.

- Giả sử bất đẳng thức cho  đúng với  mọi số tự nhiên n = k ≥ 1, tức là :

    1.3.5....(2k1)2.4.6...2k   <  12k+1  (1)

-Ta chứng minh bất đẳng thức cho đúng với n = k + 1, tức là :

  1.3.5....(2k1)(2k+1)2.4.6...2k(2k+​ 2)   <  12k+3 (2)

Thật vậy, ta có :

 VT(2)=1.3.5....(2k1)2.4.6...2k.2k+12k+2   <  12k+1.2k+12k+2  =2k+ ​12k+2 (theo (1))

Ta chứng minh:

  2k+​  12k ​+​ 2  <  12k+3  2k+1.  2k​​ +​  3<2k+2 (do hai vế đều dương)

Hay (2k + 1).(2k + 3) < (2k + 2)2

4k^2 + 6k + 2k + 3 < 4k^2 + 8k + 4

 3 < 4 (luôn đúng)

Vậy bất đẳng thức đã cho đúng với mọi số tự nhiên n ≥ 1.

- Chú ý:

Nếu phải chứng minh mệnh đề là đúng với mọi số tự nhiên n ≥ p (p là một số tự nhiên) thì:

+ Ở bước 1, ta phải kiểm tra mệnh đề đúng với n = p;

+ Ở bước 2, ta giả thiết mệnh đề đúng với số tự nhiên bất kì n = k ≥ p và phải chứng minh rằng nó cũng đúng với n = k + 1.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »