Sân trường có một bồn hoa hình tròn tâm O. Một nhóm học sinh lớp 12 được giao thiết kế bốn hoa, nhóm này định bồn hoa thành bốn phần bởi hai đường parabol có cùng đỉnh O và đối xứng nhau qua O (như hình vẽ). Hai đường parabol cắt đường tròn tại bốn điểm A, B, C, D tạo thành một hình vuông có cạnh bằng 4m. Phần diện tích dùng để trồng hoa, phần diện tích dùng để trồng cỏ.
Biết kinh phí trồng hoa là 150.000 đồng/, kinh phí để trồng cỏ là 100.000 đồng/. Hỏi nhà trường cần bao nhiêu tiền để trồng bồn hoa đó? (Số tiền làm tròn đến hàng chục nghìn)
A. 3.000.000 đồng
B. 3.270.000 đồng
C. 5.790.000 đồng
D. 6.060.000 đồng
Chọn đáp án B
Phương pháp
+ Từ giả thiết ta viết được phương trình đường tròn và phương trình parabol
+ là phần diện tích giới hạn bởi parabol; đường tròn và hai đường thẳng x=2;x=-2. Từ đó sử dụng công thức diện tích hình phẳng bằng ứng dụng tích phân để tính .
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y=f(x);y=g(x) và hai đường thẳng x=a;x=b là
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Thể tích khối lăng trụ có diện tích đáy là B và chiều cao h được tính bởi công thức
Ông A dự định sử dụng hết kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)
Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số cắt trục hoành tại ba điểm phân biệt
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC=2a, SA vuông góc với mặt phẳng đáy và . Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng
Cho x, y là các số thực thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức P=2x-y
Cho hàm số y=f(x). Đồ thị hàm số y=f’(x) như hình vẽ. Đặt , với m là tham số thực. Điều kiện cần và đủ để bất phương trình g(x)≥0 nghiệm đúng với là
Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn theo quý (3 tháng), lãi suất 2% một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền (cả vốn lẫn lãi) gần nhất với kết quả nào sau đây
Cho một hình trụ có chiều cao bằng 2 và bán kính đáy bằng 3. Thể tích khối trụ đã cho bằng
Biết bất phương trình có tập nghiệm là đoạn [a;b]. Giá trị của a+b bằng
Cho hình H là đa giác đều có 24 đỉnh. Chọn ngẫu nhiên 4 đỉnh của H. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
Cho hình chóp S.ABCD đều có AB=2 và . Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng
Cho lăng trụ đều ABC.EFH có tất cả các cạnh bằng a. Gọi S là điểm đối xứng của A qua BH. Thể tích khối đa diện ABC.SFH bằng
Cho đồ thị y=f(x) như hình vẽ sau đây. Biết rằng và . Tính diện tích S của phần hình phẳng được tô đậm
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=1 và x=4, biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 ≤ x ≤ 4) thì được thiết diện là một hình lục giác đều có độ dài cạnh là 2x