Cho tứ diện có đôi một vuông góc với , , . Gọi lần lượt là trọng tâm các tam giác . Thể tích của khối tứ diện bằng:
A.
B.
C.
D.
Phương pháp giải:
- Gọi lần lượt là trung điểm của , sử dụng công thức tỉ lệ thể tích Simpson, so sánh và .
- Tiếp tục so sánh thể tích hai khối chóp có cùng chiều cao và , sử dụng tam giác đồng dạng để suy ra tỉ số diện tích hai đáy.
- Tính thể tích khối tứ diện là , từ đó tính được .
Giải chi tiết:
Gọi lần lượt là trung điểm của , ta có .
Khi đó .
Dễ thấy đồng dạng với tam giác theo tỉ số nên .
Mà hai khối chóp và có dùng chiều cao nên .
Lại có .
Vậy .
Đáp án A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn có mặt hai chữ số chẵn là hai chữ số lẻ?
Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để ít nhất một lần xuất hiện mặt sáu chấm.
Cho hình chóp có đáy là hình chữ nhật với . Cạnh bên SA vuông góc với đáy. Gọi M,N lần lượt là trung điểm của SB và SD. Tính khoảng cách d từ S đến mặt phẳng .
Cho hàm số có đồ thị là parabol như hình vẽ bên. Khẳng định nào sau đây là đúng?
Tính tổng các giá trị nguyên của tham số m trên để hàm số nghịch biến trên khoảng .
Cho hàm số bậc ba có đồ thị là đường cong như hình vẽ bên. Hỏi phương trình có bao nhiêu nghiệm phân biệt.
Cho hình lăng trụ có đáy là tam giác vuông cân tại B và . Hình chiếu vuông góc của trên mặt phẳng là trung điểm H của cạnh AB và . Thể tích của khối lăng trụ đã cho bằng:
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau?