IMG-LOGO

Câu hỏi:

08/07/2024 85

Tính thể tích \[V\] của khối lăng trụ tứ giác đều \(ABCD.A'B'C'D'\) biết độ dài cạnh đáy của lăng trụ bằng \[2\] đồng thời góc tạo bởi \(A'C\) và đáy \[\left( {ABCD} \right)\] bằng \[30^\circ \].

A.\(V = \frac{{8\sqrt 6 }}{9}\).

B.\(V = 8\sqrt 6 \).

C.\(V = 24\sqrt 6 \).

D.\(V = \frac{{8\sqrt 6 }}{3}\).

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Tính thể tích \[V\] của khối lăng trụ tứ giác đều \(ABCD.A'B'C'D'\) biết độ dài cạnh đáy của lăng trụ bằng \[2\] đồng thời góc tạo bởi \(A'C\) và đáy \[\left( {ABCD} \right)\] bằng \[30^\circ (ảnh 1)

Vì \(ABCD.A'B'C'D'\) là khối trụ tứ giác đều nên đáy là hình vuông và cạnh bên vuông góc với mặt đáy.

Hình chiếu của \(A'C\) trên mặt phẳng \(\left( {ABCD} \right)\) là \(AC.\)

\( \Rightarrow \widehat {\left( {A'C;\left( {ABCD} \right)} \right)} = \widehat {\left( {A'C;AC} \right)} = \widehat {A'CA} = {30^0}.\)

Trong tam giác vuông \(A'AC\) có \(AC = AB\sqrt 2 = 2\sqrt 2 \)

\(A'A = AC.\tan {30^0} = \frac{{2\sqrt 6 }}{3}\)

\({S_{ABCD}} = A{B^2} = 4\)

Thể tích \(V\) của khối lăng trụ tứ giác đều \(ABCD.A'B'C'D'\) là \(V = \frac{{8\sqrt 6 }}{3}\).

Đáp án D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm đa thức \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình vẽ sau

Cho hàm đa thức \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình vẽ sau Có bao nhiêu giá trị của \(m \in \left[ {0;\,6} \right];\,2m \in \mathbb{Z}\) để hàm số \(g(x) = f\left( {{x^2} -  (ảnh 1)

Có bao nhiêu giá trị của \(m \in \left[ {0;\,6} \right];\,2m \in \mathbb{Z}\) để hàm số \(g(x) = f\left( {{x^2} - 2\left| {x - 1} \right| - 2x + m} \right)\) có đúng \(9\) điểm cực trị?

Xem đáp án » 16/05/2022 430

Câu 2:

Cho hình chóp \[S.ABCD\], đáy là hình chữ nhật tâm \[O\], \[AB = a\], \[AD = a\sqrt 3 \], \[SA = 3a\], \[SO\] vuông góc với mặt đáy \[\left( {ABCD} \right)\]. Thể tích khối chóp bằng

Xem đáp án » 16/05/2022 272

Câu 3:

Số giá trị nguyên của tham số \(m\) để hàm số \(y = m{x^4} - \left( {m - 3} \right){x^2} + {m^2}\)không có điểm cực đại là

Xem đáp án » 16/05/2022 168

Câu 4:

Cho hàm số \(y = \frac{{x + m}}{{x - 1}}\) có đồ thị là đường cong \(\left( H \right)\) và đường thẳng \(\Delta \) có phương trình \(y = x + 1\). Số giá trị nguyên của tham số \(m\) nhỏ hơn 10 để đường thẳng \(\Delta \) cắt đường cong \(\left( H \right)\) tại hai điểm phân biệt nằm về hai nhánh của đồ thị.

Xem đáp án » 16/05/2022 163

Câu 5:

Tính tổng tất cả các nghiệm của phương trình sau \({3^{2x + 8}} - {4.3^{x + 5}} + 27 = 0\).

Xem đáp án » 16/05/2022 154

Câu 6:

Cho hàm số \(y = {x^3} - 6{x^2} + 7x + 5\) có đồ thị là \(\left( C \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 là:

Xem đáp án » 16/05/2022 139

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm f'(x) = 2x - 2x2, mi x 0 . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là

Xem đáp án » 16/05/2022 126

Câu 8:

Hàm số \(y = \left| {{{\left( {x - 1} \right)}^3}\left( {x + 1} \right)} \right|\) có bao nhiêu điểm cực trị?

Xem đáp án » 16/05/2022 118

Câu 9:

Cho \(x,y\) là các số thực thỏa mãn \({\log _9}x = {\log _{12}}y = {\log _{16}}\left( {x + 2y} \right)\). Giá trị tỉ số \(\frac{x}{y}\) là

Xem đáp án » 16/05/2022 116

Câu 10:

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \[A\]. Biết \(AB = AA' = a\), \(AC = 2a\). Gọi \(M\) là trung điểm của \[AC\]. Diện tích mặt cầu ngoại tiếp tứ diện \(MA'B'C'\) bằng

Xem đáp án » 16/05/2022 115

Câu 11:

Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên

Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên \(x\)\( - \infty \)                     \( - 3\)                            0                          3             (ảnh 1)

Tìm \(m\) để phương trình \(2f(x) + m = 0\) có đúng \(3\) nghiệm phân biệt

Xem đáp án » 16/05/2022 112

Câu 12:

Cho hàm số \(y = \left( {x + 1} \right)\left( {2x + 1} \right)\left( {3x + 1} \right)\left( {m + \left| {2x} \right|} \right)\) và \(y = - 12{x^4} - 22{x^3} - {x^2} + 10x + 3\) có đồ thị lần lượt là \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) . có bao nhiêu giá trị nguyên của tham số \(m\) trên đoạn \(\left[ { - 2020;2020} \right]\) để \(\left( {{C_1}} \right)\) cắt \(\left( {{C_2}} \right)\) tại \(3\) điểm phân biệt.

Xem đáp án » 16/05/2022 105

Câu 13:

Số đường tiệm cận của đồ thị hàm số \(y = \frac{3}{{x - 2}}\) bằng

Xem đáp án » 16/05/2022 104

Câu 14:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?

Xem đáp án » 16/05/2022 102

Câu 15:

Tìm số mặt của hình đa diện ở hình vẽ bên:

Tìm số mặt của hình đa diện ở hình vẽ bên: (ảnh 1)

Xem đáp án » 16/05/2022 100

Câu hỏi mới nhất

Xem thêm »
Xem thêm »