IMG-LOGO

Câu hỏi:

14/07/2024 80

Cho tứ diện \[ABCD\] có \[AC = AD = BC = BD = 1\], mặt phẳng\[\left( {ABC} \right) \bot (ABD)\] và \[\left( {ACD} \right) \bot (BCD)\]. Khoảng cách từ \[A\] đến mặt phẳng \[\left( {BCD} \right)\]là:

A.\[2\sqrt 6 \].

B.\[\frac{6}{{\sqrt 3 }}\].

C.\[\frac{{\sqrt 6 }}{2}\].

D.\[\frac{{\sqrt 6 }}{3}\].

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Cho tứ diện \[ABCD\] có \[AC = AD = BC = BD = 1\], mặt phẳng\[\left( {ABC} \right) \bot (ABD)\] và \[\left( {ACD} \right) \bot (BCD)\]. Khoảng cách từ \[A\] đến mặt phẳng \[\left( {BCD} \righ (ảnh 1)

Gọi \(H,K\) lần lượt là trung điểm của \(CD\) và \(AB.\)

\(\Delta ACD\) cân tại \(A\) nên \[AH \bot CD \Rightarrow AH \bot \left( {BCD} \right) \Rightarrow d\left( {A;\left( {BCD} \right)} \right) = AH\]

Đặt \(AH = x.\)

\(HD = \sqrt {A{D^2} - A{H^2}} = \sqrt {1 - {x^2}} \).

\(\Delta BCD = \Delta ACD \Rightarrow HB = HA = x\) (hai đường cao tương ứng bằng nhau).

\( \Rightarrow \frac{1}{{H{K^2}}} = \frac{1}{{H{A^2}}} + \frac{1}{{H{B^2}}} = \frac{2}{{{x^2}}} \Rightarrow HK = \frac{{x\sqrt 2 }}{2}.\)

Mặt khác, ta lại có:

\(\Delta ABD\) cân tại \(D\) nên \(DK \bot AB \Rightarrow AH \bot \left( {ABC} \right) \Rightarrow DK \bot CK \Rightarrow \Delta KCD\) là tam giác vuông tại \(K.\)

Suy ra \(HK = \frac{1}{2}CD \Leftrightarrow HK = HD = \frac{{x\sqrt 2 }}{2} = \sqrt {1 - {x^2}} \Leftrightarrow x = \frac{{\sqrt 6 }}{3}.\)

Vậy khoảng cách từ \(A\) đến mặt phẳng \(\left( {BCD} \right)\) bằng \(\frac{{\sqrt 6 }}{3}.\)

Đáp án D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm đa thức \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình vẽ sau

Cho hàm đa thức \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình vẽ sau Có bao nhiêu giá trị của \(m \in \left[ {0;\,6} \right];\,2m \in \mathbb{Z}\) để hàm số \(g(x) = f\left( {{x^2} -  (ảnh 1)

Có bao nhiêu giá trị của \(m \in \left[ {0;\,6} \right];\,2m \in \mathbb{Z}\) để hàm số \(g(x) = f\left( {{x^2} - 2\left| {x - 1} \right| - 2x + m} \right)\) có đúng \(9\) điểm cực trị?

Xem đáp án » 16/05/2022 430

Câu 2:

Cho hình chóp \[S.ABCD\], đáy là hình chữ nhật tâm \[O\], \[AB = a\], \[AD = a\sqrt 3 \], \[SA = 3a\], \[SO\] vuông góc với mặt đáy \[\left( {ABCD} \right)\]. Thể tích khối chóp bằng

Xem đáp án » 16/05/2022 271

Câu 3:

Số giá trị nguyên của tham số \(m\) để hàm số \(y = m{x^4} - \left( {m - 3} \right){x^2} + {m^2}\)không có điểm cực đại là

Xem đáp án » 16/05/2022 168

Câu 4:

Cho hàm số \(y = \frac{{x + m}}{{x - 1}}\) có đồ thị là đường cong \(\left( H \right)\) và đường thẳng \(\Delta \) có phương trình \(y = x + 1\). Số giá trị nguyên của tham số \(m\) nhỏ hơn 10 để đường thẳng \(\Delta \) cắt đường cong \(\left( H \right)\) tại hai điểm phân biệt nằm về hai nhánh của đồ thị.

Xem đáp án » 16/05/2022 162

Câu 5:

Tính tổng tất cả các nghiệm của phương trình sau \({3^{2x + 8}} - {4.3^{x + 5}} + 27 = 0\).

Xem đáp án » 16/05/2022 153

Câu 6:

Cho hàm số \(y = {x^3} - 6{x^2} + 7x + 5\) có đồ thị là \(\left( C \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 là:

Xem đáp án » 16/05/2022 138

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm f'(x) = 2x - 2x2, mi x 0 . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là

Xem đáp án » 16/05/2022 126

Câu 8:

Hàm số \(y = \left| {{{\left( {x - 1} \right)}^3}\left( {x + 1} \right)} \right|\) có bao nhiêu điểm cực trị?

Xem đáp án » 16/05/2022 118

Câu 9:

Cho \(x,y\) là các số thực thỏa mãn \({\log _9}x = {\log _{12}}y = {\log _{16}}\left( {x + 2y} \right)\). Giá trị tỉ số \(\frac{x}{y}\) là

Xem đáp án » 16/05/2022 116

Câu 10:

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \[A\]. Biết \(AB = AA' = a\), \(AC = 2a\). Gọi \(M\) là trung điểm của \[AC\]. Diện tích mặt cầu ngoại tiếp tứ diện \(MA'B'C'\) bằng

Xem đáp án » 16/05/2022 115

Câu 11:

Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên

Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên \(x\)\( - \infty \)                     \( - 3\)                            0                          3             (ảnh 1)

Tìm \(m\) để phương trình \(2f(x) + m = 0\) có đúng \(3\) nghiệm phân biệt

Xem đáp án » 16/05/2022 112

Câu 12:

Cho hàm số \(y = \left( {x + 1} \right)\left( {2x + 1} \right)\left( {3x + 1} \right)\left( {m + \left| {2x} \right|} \right)\) và \(y = - 12{x^4} - 22{x^3} - {x^2} + 10x + 3\) có đồ thị lần lượt là \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) . có bao nhiêu giá trị nguyên của tham số \(m\) trên đoạn \(\left[ { - 2020;2020} \right]\) để \(\left( {{C_1}} \right)\) cắt \(\left( {{C_2}} \right)\) tại \(3\) điểm phân biệt.

Xem đáp án » 16/05/2022 105

Câu 13:

Số đường tiệm cận của đồ thị hàm số \(y = \frac{3}{{x - 2}}\) bằng

Xem đáp án » 16/05/2022 103

Câu 14:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?

Xem đáp án » 16/05/2022 102

Câu 15:

Tìm số mặt của hình đa diện ở hình vẽ bên:

Tìm số mặt của hình đa diện ở hình vẽ bên: (ảnh 1)

Xem đáp án » 16/05/2022 100

Câu hỏi mới nhất

Xem thêm »
Xem thêm »