IMG-LOGO

Câu hỏi:

17/07/2024 201

Cho phương trình:

\({2^{ - \left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right|}}.{\log _{81}}\left( {\left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| + 2} \right) + {2^{ - \left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| - 2}}.{\log _3}\left( {\frac{1}{{\left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right| + 2}}} \right) = 0\)

Gọi \(S\) là tập hợp tất cả các giá trị của \(m\) nguyên để phương trình đã cho có 6 nghiệm hoặc 7 nghiệm hoặc 8 nghiệm. Tính tổng bình phương tất cả các phần tử của tập \(S.\)

A.20.

B.19.

C.14.

D.28.

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Ta có:

\({2^{ - \left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right|}}.{\log _{81}}\left( {\left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| + 2} \right) + {2^{ - \left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| - 2}}.{\log _3}\left( {\frac{1}{{\left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right| + 2}}} \right) = 0{\rm{ }}\left( 1 \right)\)

\( \Leftrightarrow {2^{ - \left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right| - 2}}.{\log _3}\left( {\left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| + 2} \right) + {2^{ - \left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| - 2}}.{\log _3}\left( {\left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right| + 2} \right) = 0\)

\( \Leftrightarrow {2^{\left| {\left| {{x^3}} \right| - 3{m^2} + 1} \right| + 2}}.{\log _3}\left( {\left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| + 2} \right) = {2^{ - \left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right| + 2}}.{\log _3}\left( {\left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right| + 2} \right){\rm{ }}\left( 2 \right)\)

Xét hàm số \(f\left( t \right) = {2^t}{\log _3}t\) với \(t \ge 2.\)

Có \(f'\left( t \right) = {2^t}\ln 2.{\log _3}t + \frac{{{2^t}}}{{t.\ln 3}} = {2^t}\left( {\ln 2.{{\log }_3}t + \frac{1}{{t.\ln 3}}} \right) >0,\forall c \in \left[ {2; + \infty } \right).\)

Hàm số \(f\left( t \right) = {2^t}{\log _3}t\) đồng biến trên \(\left( {2; + \infty } \right).\)

\(\left( 2 \right) \Leftrightarrow f\left( {\left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| + 2} \right) = f\left( {\left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right| + 2} \right)\)

\( \Leftrightarrow \left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| + 2 = \left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right| + 2 \Leftrightarrow \left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| = \left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right|\)

\( \Leftrightarrow \left[ \begin{array}{l}\left| {{x^3}} \right| - 3{x^2} + 1 = \left| {{m^3}} \right| - 3{m^2} + 1\\\left| {{x^3}} \right| - 3{x^2} + 1 = - \left| {{m^3}} \right| + 3{m^2} - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left| {{x^3}} \right| - 3{x^2} = \left| {{m^3}} \right| - 3{m^2}{\rm{ }}\left( 3 \right)\\\left| {{x^3}} \right| - 3{x^2} = - \left| {{m^3}} \right| + 3{m^2} - 2{\rm{ }}\left( 4 \right)\end{array} \right.\)

Xét hàm số \(g\left( x \right) = {x^3} - 3{x^2}\) có \(g'\left( x \right) = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right..\)

Ta có bảng biến thiên của hàm số \(g\left( x \right) = {x^3} - 3{x^2}\)

Cho phương trình:\({2^{ - \left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right|}}.{\log _{81}}\left( {\left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| + 2} \right) + {2^{ - \left| {\left| (ảnh 1)

Suy ra bảng biến thiên của hàm số \(g\left( {\left| x \right|} \right) = {\left| x \right|^3} - 3{x^2}\)

Cho phương trình:\({2^{ - \left| {\left| {{m^3}} \right| - 3{m^2} + 1} \right|}}.{\log _{81}}\left( {\left| {\left| {{x^3}} \right| - 3{x^2} + 1} \right| + 2} \right) + {2^{ - \left| {\left|  (ảnh 1)

Để phương trình (1) có 6 nghiệm hoặc 7 nghiệm hoặc 8 nghiệm thì phương trình (3) có 4 nghiệm và phương trình (4) có ít nhất 2 nghiệm hoặc phương trình (3) có 3 nghiệm thì phương trình (4) có ít nhất 3 nghiệm hoặc phương trình (3) có 2 nghiệm thì phương trình (4) có 4 nghiệm.

TH1: phương trình (3) có 4 nghiệm và phương trình (4) có ít nhất 2 nghiệm \(\left\{ \begin{array}{l} - 4 < \left| {{m^3}} \right| - 3{m^2} < 0\\ - \left| {{m^3}} \right| + 3{m^2} - 2 \ge - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 < \left| {{m^3}} \right| - 3{m^2} < 0\\\left| {{m^3}} \right| - 3{m^2} \le 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| {{m^3}} \right| - 3{m^2} < 0\\\left| {{m^3}} \right| - 3{m^2} + 4 >0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2}\left( {\left| m \right| - 3} \right) < 0\\{\left( {\left| m \right| - 2} \right)^2}\left( {\left| m \right| + 1} \right) >0\end{array} \right. \Leftrightarrow - 3 < m < 3\)

TH2: phương trình (3) có 3 nghiệm thì phương trình (4) có ít nhất 3 nghiệm \(\left\{ \begin{array}{l}\left| {{m^3}} \right| - 3{m^2} = 0\\ - 4 < - \left| {{m^3}} \right| + 3{m^2} - 2 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2}\left( {\left| m \right| - 3} \right) = 0\\\left| {{m^3}} \right| - 3{m^2} \ge - 2\\\left| {{m^3}} \right| - 3{m^2} < 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = \pm 3\end{array} \right.\)

TH3: phương trình (3) có 2 nghiệm thì phương trình (4) có 4 nghiệm

\(\left\{ \begin{array}{l}\left[ \begin{array}{l}\left| {{m^3}} \right| - 3{m^2} = - 4\\\left| {{m^3}} \right| - 3{m^2} >0\end{array} \right.\\ - 4 < - \left| {{m^3}} \right| + 3{m^2} - 2 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2}\left( {\left| m \right| - 3} \right) >0\\\left| {{m^3}} \right| - 3{m^2} < 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| m \right| >3\\\left| {{m^3}} \right| - 3{m^2} < 2\end{array} \right. \Leftrightarrow m \in \emptyset \)

Xét phương trình: \( - \left| {{m^3}} \right| + 3{m^2} - 2 = \left| {{m^3}} \right| - 3{m^2} \Leftrightarrow \left| {{m^3}} \right| - 3{m^2} + 1 = 0\) không có nghiệm nguyên.

Vậy \(S = \left\{ {0; \pm 1; \pm 2; \pm 3} \right\}.\) Tổng bình phương các phần tử của \(S\) là: 28.

Đáp án D

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho khối chóp \(S.ABC,\) đáy \(ABC\) là tam giác có \(AB = AC = a,\widehat {BAC} = {60^0},\widehat {SBA} = \widehat {SCA} = {90^0},\) góc giữa \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) bằng \({60^0}.\) Thể tích của khối chóp đã cho bằng:

Xem đáp án » 16/05/2022 1,042

Câu 2:

Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) đều có đạo hàm trên \(\mathbb{R}\) và thỏa mãn: \({f^3}\left( {2 - x} \right) - 2{f^2}\left( {2 + 3x} \right) + {x^2}g\left( x \right) + 36x = 0,\forall x \in \mathbb{R}.\) Tính \(A = 3f\left( 2 \right) + 4f'\left( 2 \right).\)

Xem đáp án » 16/05/2022 541

Câu 3:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới.

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới.Tập hợp tất cả các giá trị của \(m\) để phương trình \(f\left( {\frac{1}{{\cos x}}} \right) (ảnh 1)

Tập hợp tất cả các giá trị của \(m\) để phương trình \(f\left( {\frac{1}{{\cos x}}} \right) = m\) có nghiệm thuộc khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) là?

Xem đáp án » 16/05/2022 248

Câu 4:

Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)

Xem đáp án » 16/05/2022 233

Câu 5:

Giá trị của tổng \(S = C_3^3 + C_4^3 + ... + C_{100}^3\) bằng

Xem đáp án » 16/05/2022 177

Câu 6:

Cho hàm số \(y = - {x^4} + 2{x^2}\) có đồ thị như hình vẽ bên.

Cho hàm số \(y =  - {x^4} + 2{x^2}\) có đồ thị như hình vẽ bên.Tìm tất cả các giá trị \(m\) để phương trình \( - {x^4} + 2{x^2} = {\log _2}m\) có bốn nghiệm thực phân biệt  (ảnh 1)

Tìm tất cả các giá trị \(m\) để phương trình \( - {x^4} + 2{x^2} = {\log _2}m\) có bốn nghiệm thực phân biệt

Xem đáp án » 16/05/2022 162

Câu 7:

Cho tập \(X = \left\{ {1;2;3;...;8} \right\}\). Gọi \(A\) là tập hợp các số tự nhiên có 8 chữ số đôi một khác nhau từ \(X.\) Lấy ngẫu nhiên một số từ \(A.\) Tính xác suất để số lấy được chia hết cho 2222.

Xem đáp án » 16/05/2022 161

Câu 8:

Một hình nón có bán kính đáy bằng 5 cm và diện tích xung quanh bằng \(30\pi c{m^2}.\) Tính thể tích \(V\) của khối nón đó.

Xem đáp án » 16/05/2022 155

Câu 9:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Số đo góc giữa \(\left( {BA'C} \right)\) và \(\left( {DA'C} \right).\)

Xem đáp án » 16/05/2022 154

Câu 10:

Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)

Xem đáp án » 16/05/2022 151

Câu 11:

Hàm số \(y = f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ

Hàm số \(y = f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽHàm số \(y = f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\) nghịch biến trên khoảng (ảnh 1)

Hàm số \(y = f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\) nghịch biến trên khoảng

Xem đáp án » 16/05/2022 143

Câu 12:

Tập nghiệm của bất phương trình \({\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\) là \(\left( { - \sqrt a ; - \sqrt b } \right].\)

Xem đáp án » 16/05/2022 138

Câu 13:

Anh Minh muốn xây dựng một hố ga không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được \(3200c{m^3}\), tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2 . Xác định diện tích đáy của hố ga để khi xây hố tiết kiệm được nguyên vật liệu nhất.

Xem đáp án » 16/05/2022 137

Câu 14:

Có bao nhiêu giá trị nguyên \(m\) để hàm số \(y = {x^3} - 3{x^2} - mx + 4\) có hai điểm cực trị thuộc khoảng \(\left( { - 3;3} \right)?\)

Xem đáp án » 16/05/2022 130

Câu 15:

Cho tứ diện \(ABCD\) có độ dài cạnh bằng \(a,\left( S \right)\) là mặt tiếp xúc với sáu cạnh của tứ diện \(ABCD.M\) là một điểm thay đổi trên \(\left( S \right).\) Tính tổng \(T = M{A^2} + M{B^2} + M{C^2} + M{D^2}.\)

Xem đáp án » 16/05/2022 125

Câu hỏi mới nhất

Xem thêm »
Xem thêm »