Thứ sáu, 04/04/2025
IMG-LOGO

Câu hỏi:

22/07/2024 100

Cho hình lăng trụ có hai đáy là đường tròn tâm \(O\) và \(O',\) bán kính đáy bằng chiều cao bằng \(4a.\) Trên đường tròn đáy có tâm \(O\) lấy điểm \(A,D;\) trên đường tròn \[O'\]lấy điểm \(B,C\) sao cho \(AB\) song song với \(CD\) và \(AB\) không cắt \(OO'.\) Tính độ dài \(AD\) để thể tích khối chóp \(O'.ABCD\) đạt giá trị lớn nhất?

A.\(AD = 4a\sqrt 2 .\)

Đáp án chính xác

B. \(AD = 8a.\)

C.\(AD = 2a.\)

D. \(AD = 2a\sqrt 3 .\)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án A.

Cho hình lăng trụ có hai đáy là đường tròn tâm O và O', bán kính đáy bằng chiều cao bằng 4a. Trên đường tròn đáy (ảnh 1)

Từ \(B,C\) kẻ các đường thẳng song song với đường sinh của hình trụ cắt đường tròn tâm \(O\) lần lượt tại \(B',C'.\)

Vì \(AD\) và \(BC\) là giao tuyến của mặt phẳng \(\left( {AB;CD} \right)\) với hai mặt phẳng song song nên \(AD//BC.\)

Suy ra: \(AD//B'C'\) hay \(AB'C'D\) là hình bình hành nộp tiếp nên nó là hình chữ nhật.

\(\left\{ \begin{array}{l}B'C' \bot DC'\\B'C' \bot CC'\end{array} \right. \Rightarrow B'C' \bot CD\) mà \(BC//B'C'\) suy ra \(BC \bot CD.\)

Vậy tứ giác \(ABCD\) là hình chữ nhật.

Đặt \(BC = AD = 2x,\) gọi \(I,I'\) lần lượt là trung điểm của \(AD\) và \(BC.\)

Ta có: \(\left\{ \begin{array}{l}OI' \bot BC\\OO' \bot BC\end{array} \right. \Rightarrow BC \bot \left( {OO'I'} \right) \Rightarrow \left( {OO'I'} \right) \bot \left( {ABCD} \right)\) và có giao tuyến \(I'I.\)

Từ \(O'\) kẻ đường vuông góc với \(I'I\) tại \(H,\) suy ra \(O'H\) là đường cao của hình chóp \(O'.ABCD\).

Gọi \(J\) là giao điểm của \(OO'\) và \(I'I,J\) là trung điểm của \(OO'.\)

Ta có: \(OI = O'I' = \sqrt {O'{C^2} - I'{C^2}} = \sqrt {16{a^2} - {x^2}} .\)

\(DC' = 2.OI = 2\sqrt {16{a^2} - {x^2}} \Rightarrow DC = \sqrt {DC{'^2} + CC{'^2}} = \sqrt {4\left( {16{a^2} - {x^2}} \right) + 16{a^2}} = 2\sqrt {20{a^2} - {x^2}} \)

\(\frac{1}{{O'{H^2}}} = \frac{1}{{O'{J^2}}} + \frac{1}{{O'I{'^2}}} = \frac{{O'{J^2} + O'I{'^2}}}{{O'{J^2}.O'I{'^2}}} \Rightarrow O'H = \frac{{O'J.O'I'}}{{\sqrt {O'{J^2} + O'I{'^2}} }} = \frac{{2a.\sqrt {16{a^2} - {x^2}} }}{{\sqrt {20{a^2} - {x^2}} }}\)

Suy ra: \({V_{O'.ABCD}} = \frac{1}{3}.O'H.AD.DC = \frac{1}{3}.\frac{{2a\sqrt {16{a^2} - {x^2}} }}{{\sqrt {20{a^2} - {x^2}} }}.2x.2\sqrt {20{a^2} - {x^2}} = \frac{8}{3}.x\sqrt {16{a^2} - {x^2}} \)

\( = \frac{{8a}}{3}\sqrt {{x^2}\left( {16{a^2} - {x^2}} \right)} \le \frac{{8a}}{3}.\frac{{{x^2} + 16{a^2} - {x^2}}}{2} = \frac{{64{a^3}}}{3}.\)

Vậy \(\max {V_{O'.ABCD}} = \frac{{64{a^3}}}{3} \Leftrightarrow {x^2} = 16{a^2} - {x^2} \Leftrightarrow x = 2\sqrt 2 a \Rightarrow AD = 4\sqrt 2 a.\)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đội văn nghệ của lớp 12A có 5 học sinh nam và 7 học sinh nữ. Có bao nhiêu cách chọn ra 2 học sinh của đội văn nghệ sao cho 2 học sinh có 1 học sinh nam và 1 học sinh nữ.

Xem đáp án » 16/05/2022 831

Câu 2:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\) cạnh \[a.\] Biết \(SA = SB = SC = a.\) Đặt \(SD = x\left( {0 < x < a\sqrt 3 } \right).\) Tính \(x\) theo \(a\) sao cho \(AC.SD\) đạt giá trị lớn nhất.

Xem đáp án » 16/05/2022 430

Câu 3:

Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {x + 4} - 2}}{{{x^2} - x}}\) là 

Xem đáp án » 16/05/2022 275

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ:

Cho hàm số y=f(x) có đồ thị như hình vẽ: Gọi S là tập các giá trị nguyên của tham số m để phương trình f(4|sinx|+m)-3=0 (ảnh 1)

Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để phương trình \(f\left( {4\left| {\sin x} \right| + m} \right) - 3 = 0\) có đúng 12 nghiệm phân biệt thuộc nửa khoảng \(\left( {0;4\pi } \right].\) Tổng các phần tử của \(S\) bằng

Xem đáp án » 16/05/2022 239

Câu 5:

Cho hàm số \(f\left( x \right) = {x^5} + 3{x^3} - 4m.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\sqrt[3]{{f\left( x \right) + m}}} \right) = {x^3} - m\) có nghiệm thuộc đoạn \(\left[ {1;2} \right]?\)

Xem đáp án » 16/05/2022 235

Câu 6:

Gọi \(S\) là tập hợp các số tự nhiên có bốn chữ số đôi một khác nhau lập từ các số \(0;1;2;3;4;5;6;7.\) Chọn ngẫu nhiên 1 số từ tập hợp \(S.\) Tính xác suất để số được chọn có đúng 2 chữ số chẵn.

Xem đáp án » 16/05/2022 202

Câu 7:

Tập nghiệm của bất phương trình \({6.9^x} - {12.6^x} + {6.4^x} \le 0\) có dạng \(S = \left[ {a;b} \right].\) Giá trị của biểu thức \({a^2} + {b^2}\) bằng 

Xem đáp án » 16/05/2022 199

Câu 8:

Hệ số của \({x^5}\) trong khai triển \({x^2}{\left( {x - 2} \right)^5} + {\left( {2x - 1} \right)^6}\) bằng

Xem đáp án » 16/05/2022 197

Câu 9:

Phương trình tiệm cận ngang của đồ thị hàm số \(y = \frac{{4 - 3x}}{{4x + 5}}\) là 

Xem đáp án » 16/05/2022 179

Câu 10:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên? (ảnh 1)

Xem đáp án » 16/05/2022 174

Câu 11:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ. Phương trình \(f\left( {2 - f\left( x \right)} \right) = 0\) có tất cả bao nhiêu nghiệm thực phân biệt?

Cho hàm số y=f(x) liên tục trên R có đồ thị như hình vẽ. Phương trình f(2-f(x))=0 có tất cả bao nhiêu nghiệm thực phân biệt (ảnh 1)

Xem đáp án » 16/05/2022 162

Câu 12:

Giá trị của biểu thức \(\ln 8a - \ln 2a\) bằng 

Xem đáp án » 16/05/2022 146

Câu 13:

Gọi \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\) là hai nghiệm của phương trình \({3^{2x - 1}} - {4.3^x} + 9 = 0.\) Giá trị của biểu thức \(P = {x_2} - 2{x_1}\) bằng </>

Xem đáp án » 16/05/2022 140

Câu 14:

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,SA\) vuông góc với mặt đáy và \(SA = a\sqrt 2 .\) Góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng

Xem đáp án » 16/05/2022 138

Câu 15:

Hình bát diện đều có bao nhiêu cạnh? 

Xem đáp án » 16/05/2022 137

Câu hỏi mới nhất

Xem thêm »
Xem thêm »