Cho hình chóp S.ABCcó đáy ABClà tam giác vuông cân tại \(B\) có \(AC = 2a.\) Cạnh \(SA\) vuông góc với đáy và \(SA = 2a.\) Mặt phẳng \(\left( P \right)\) đi qua \(A,\) vuông góc với cạnh \(SB\) tại \(K\) và cắt cạnh \(SC\) tại \(H.\) Gọi \({V_1},{V_2}\) lần lượt là thể tích của khối tứ diện \(SAHK\) và khối đa dienj \(ABCHK.\) Tỉ số \(\frac{{{V_2}}}{{{V_1}}}\) bằng
A.\(\frac{4}{5}.\)
B. \(\frac{2}{3}\)
C.\(\frac{4}{9}.\)
D. \(\frac{5}{4}.\)
Đáp án A.
Từ \(A\) kẻ đường thẳng vuông góc \(SB,\) cắt \(SB\) tại \(K.\)
Từ \(K\) kẻ đường thẳng vuông góc với \(SB\) cắt \(SC\) tại \(H.\)
Ta có: \(\left\{ \begin{array}{l}BC \bot SA\\BC \bot AB\end{array} \right. \Rightarrow CB \bot \left( {SAB} \right) \Rightarrow BC \bot SB,\) suy ra \(BC//HK.\)
Tam giác \(ABC\) vuông cân tại \(B\) nên \(AB = BC = \frac{{AC}}{{\sqrt 2 }} = a\sqrt 2 .\)
Áp dụng hệ thức lượng trong tam giác vuông \[SAB\] ta có:
\(S{A^2} = SK.SB \Leftrightarrow \frac{{SK}}{{SB}} = \frac{{S{A^2}}}{{S{B^2}}} = \frac{{S{A^2}}}{{A{B^2} + A{S^2}}} = \frac{{4{a^2}}}{{2{a^2} + 4{a^2}}} = \frac{2}{3}.\)
Vì \(BC//HK\) nên \(\frac{{SH}}{{SC}} = \frac{{SK}}{{SB}} = \frac{2}{3}.\)
Ta có: \(\frac{{{V_1}}}{{{V_{S.ABC}}}} = \frac{{SA}}{{SA}}.\frac{{SK}}{{SB}}.\frac{{SH}}{{SC}} = 1.\frac{2}{3}.\frac{2}{3} = \frac{4}{9} \Rightarrow {V_1} = \frac{4}{9}{V_{S.ABC}} \Rightarrow {V_2} = \frac{5}{9}{V_{S.ABC}}.\)
Vậy \(\frac{{{V_1}}}{{{V_2}}} = \frac{4}{5}.\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Đội văn nghệ của lớp 12A có 5 học sinh nam và 7 học sinh nữ. Có bao nhiêu cách chọn ra 2 học sinh của đội văn nghệ sao cho 2 học sinh có 1 học sinh nam và 1 học sinh nữ.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\) cạnh \[a.\] Biết \(SA = SB = SC = a.\) Đặt \(SD = x\left( {0 < x < a\sqrt 3 } \right).\) Tính \(x\) theo \(a\) sao cho \(AC.SD\) đạt giá trị lớn nhất.
Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {x + 4} - 2}}{{{x^2} - x}}\) là
Cho hàm số \(f\left( x \right) = {x^5} + 3{x^3} - 4m.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\sqrt[3]{{f\left( x \right) + m}}} \right) = {x^3} - m\) có nghiệm thuộc đoạn \(\left[ {1;2} \right]?\)
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ:
Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để phương trình \(f\left( {4\left| {\sin x} \right| + m} \right) - 3 = 0\) có đúng 12 nghiệm phân biệt thuộc nửa khoảng \(\left( {0;4\pi } \right].\) Tổng các phần tử của \(S\) bằng
Gọi \(S\) là tập hợp các số tự nhiên có bốn chữ số đôi một khác nhau lập từ các số \(0;1;2;3;4;5;6;7.\) Chọn ngẫu nhiên 1 số từ tập hợp \(S.\) Tính xác suất để số được chọn có đúng 2 chữ số chẵn.
Tập nghiệm của bất phương trình \({6.9^x} - {12.6^x} + {6.4^x} \le 0\) có dạng \(S = \left[ {a;b} \right].\) Giá trị của biểu thức \({a^2} + {b^2}\) bằng
Hệ số của \({x^5}\) trong khai triển \({x^2}{\left( {x - 2} \right)^5} + {\left( {2x - 1} \right)^6}\) bằng
Phương trình tiệm cận ngang của đồ thị hàm số \(y = \frac{{4 - 3x}}{{4x + 5}}\) là
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ. Phương trình \(f\left( {2 - f\left( x \right)} \right) = 0\) có tất cả bao nhiêu nghiệm thực phân biệt?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,SA\) vuông góc với mặt đáy và \(SA = a\sqrt 2 .\) Góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng
Gọi \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\) là hai nghiệm của phương trình \({3^{2x - 1}} - {4.3^x} + 9 = 0.\) Giá trị của biểu thức \(P = {x_2} - 2{x_1}\) bằng </>