Cho hình chóp SABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC), SAB là tam giác đều cạnh , đường thẳng SC tạo với mặt phẳng (ABC) góc . Thể tích của khối chóp SABC bằng:
A.
B.
C.
D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABC có AB=3, BC=4, AC=5. Tính thể tích khối chóp S.ABC biết rằng các mặt bên tạo với đáy một góc và hình chiếu vuông góc của S trên (ABC) nằm trong tam giác ABC.
Cho hình chóp đều S.ABCD có đáy là hình vuông cạnh a, M là trung điểm của SA. Biết mặt phẳng (MCD) vuông góc với mặt phẳng (SAB). Thể tích khối chóp S.ABCD là:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA=SB=SC=a. Thể tích lớn nhất của khối chóp S.ABCD là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA = a và vuông góc với đáy. Mặt phẳng qua A vuông góc với SC cắt hình chóp theo một thiết diện. Tính diện tích thiết diện đó.
Khối chóp S.ABCD có đáy là hình thoi cạnh a, SA=SB=SC=a. Cạnh SD thay đổi. Thể tích khối chóp S.ABCD lớn nhất khi độ dài cạnh SD là:
Cho khối chóp tứ giác S.ABCD. Mặt phẳng đi qua trọng tâm các tam giác SAB, SAC, SAD chia khối chóp này thành hai phần có thể tích là và ( ). Tính tỉ lệ
Cho hình chóp tứ giác đều S.ABCD, đường cao SO. Biết rằng trong các thiết diện của hình chóp cắt bởi các mặt phẳng chứa SO, thiết diện có diện tích lớn nhất là tam giác đều cạnh bằng a, tính thể tích khối chóp đã cho.
Cho hình chóp S.ABC có AB = 5cm, BC = 6cm, CA = 7cm. Hình chiếu vuông góc của S xuống mặt phẳng (ABC) nằm bên trong tam giác ABC. Các mặt phẳng (SAB), (SBC), (SCA) đều tạo với đáy một góc . Gọi AD, BE, CF là các đường phân giác của tam giác ABC với D ∈ BC, E ∈ AC, F ∈ AB .Thể tích S.DEF gần nhất với số nào sau đây?
Cho tứ diện ABCD và G là trọng tâm tam giác ACD. Mặt phẳng (P) qua BG và song song với CD chia khối tứ diện thành hai phần. Tính tỉ số thể tích (số bé chia số lớn) của hai phần đó là:
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a, hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) nằm trong tứ giác ABCD, các cạnh xuất phát từ đỉnh A của hình hộp tạo với nhau một góc . Tính thể tích khối hộp
Cho lăng trụ tam giác đều ABC.A’B’C’. Trên A’B’ kéo dài lấy điểm M sao cho . Gọi N, P lần lượt là trung điểm của A’C’ và B’B. Mặt phẳng (MNP) chia khối lăng trụ ABC.A’B’C’ thành hai khối đa diện trong đó khối đa diện chứ đỉnh A’ có thể tích và khối đa diện chứ đỉnh C’ có thể tích . Tính
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông, AB=AC=a. Biết rằng góc giữa hai mặt phẳng (ACC’) và (AB’C’) bằng (tham khảo hình vẽ bên). Thể tích của khối chóp B'.ACC'A' bằng:
Cho hình hộp ABCD.A’B’C’D’. Gọi E, F lần lượt là trung điểm của B’C’ và C’D’. Mặt phẳng (AEF) chia hình hộp thành hai hình đa diện (H) và (H’) trong đó (H) là hình đa diện chứa đỉnh A’. Tính tỉ số thể tích đa diện (H) và thể tích hình đa diện (H’).
Cho tứ diện đều ABCD có cạnh bằng 3. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho mặt phẳng (AMN) luôn vuông góc với mặt phẳng (BCD). Gọi lần lượt là giá trị lớn nhất và nhỏ nhất của thể tích khối tứ diện ABMN. Tính ?
Cho khối chóp S.ABCD có điểm M và N lần lượt nằm trên các cạnh SA và SB sao cho . Mặt phẳng qua hai điểm M, N và song song SC chia khối chóp thành 2 khối đa diện. Tính tỉ số thể tích của khối đa diện có thể tích lớn hơn so với thể tích khối chóp S.ABC