IMG-LOGO

Câu hỏi:

19/07/2024 367

Hàm số y=x2+125 có đạo hàm là

A. y'=4x2+125

B. y'=2xx2+1

C. y'=4x5x2+135

Đáp án chính xác

D. y'=4xx2+15

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính đạo hàm của hàm số y=2x2+x-123

Xem đáp án » 23/08/2022 1,093

Câu 2:

Cho đồ thị của ba hàm số y=xa,y=xb,y=xc trên khoảng 0;+ trên cùng một hệ trục toạ độ như hình vẽ bên. Mệnh đề nào sau đây đúng?

Xem đáp án » 23/08/2022 797

Câu 3:

Cho hàm số f(x)=mx3+x với mR. Tìm m để f'1=32

Xem đáp án » 23/08/2022 612

Câu 4:

Trên đồ thị (C) của hàm số y=xπ2 lấy điểm M0 có hoành độ x0=1. Tiếp tuyến của (C) tại điểm M0 có phương trình là:

Xem đáp án » 23/08/2022 399

Câu 5:

Bạn An gửi tiết kiệm vào ngân hàng với số tiền là 1.000.000 đồng không kì hạn với lãi suất là 0,65% mỗi tháng. Tính số tiền bạn An nhận được sau 2 năm?

Xem đáp án » 23/08/2022 381

Câu 6:

Cho hàm số y=f(x)=x2+x-223. Chọn khẳng định sai

Xem đáp án » 23/08/2022 332

Câu 7:

Cho f(x)=x3.x4.x512 với x0. Khi đó f(2,7) bằng

Xem đáp án » 23/08/2022 329

Câu 8:

Cho α,β là các số thực. Đồ thị các hàm số y=xα,y=xβ trên khoảng 0;+ được cho hình vẽ bên. Khẳng định nào sau đây là đúng?

Xem đáp án » 23/08/2022 310

Câu 9:

Một người gửi vào ngân hàng 100 triệu đồng với lãi suất ban đầu 4%/năm và lãi suất hàng năm được nhập vào vốn. Cứ sau một năm lãi suất tăng 0,3%. Hỏi sau 4 năm tổng số tiền người đó nhận được gần với giá trị nào nhất?

Xem đáp án » 23/08/2022 308

Câu 10:

Tìm tập xác định D của hàm số y=x3-6x2+11x-6-2

Xem đáp án » 23/08/2022 296

Câu 11:

Một người gửi vào ngân hàng số tiền A đồng, lãi suất r mỗi tháng theo hình thức lãi kép, gửi theo phương thức có kì hạn nửa năm. Công thức tính số tiền cả vốn lẫn lãi mà người đó có sau 3 năm là:

Xem đáp án » 23/08/2022 280

Câu 12:

Cho hàm số y=x+2-2. Hệ thức giữa y và y’’ không phụ thuộc vào x là:

Xem đáp án » 23/08/2022 276

Câu 13:

Bạn An gửi vào ngân hàng số tiền là 2.000.000 đồng với kì hạn 3 tháng và lãi suất là 0,48% mỗi tháng. Tính số tiền An có được sau 3 năm.

Xem đáp án » 23/08/2022 275

Câu 14:

Bạn An gửi tiết kiệm và ngân hàng với số tiền là 1.000.000 đồng không kì hạn với lãi suất là 0,65%/tháng. Tính số tiền bạn An nhận được sau 2 năm?

Xem đáp án » 23/08/2022 252

LÝ THUYẾT

I. Khái niệm

Hàm số y=xα, với α R, được gọi là hàm số lũy thừa.

Ví dụ 1. Các hàm số y=x3 +1;y=1x2;y=x5;y=xπ -3 là những hàm số lũy thừa.

– Chú ý:

Tập xác định của hàm số lũy thừa y=xα tùy thuộc vào giá trị của α. Cụ thể:

+ Với α nguyên dương, tập xác định là R.

+ Với α nguyên âm hoặc bằng 0; tập xác định là R\0.

+ Với α không nguyên, tập xác định là (0;+).

II. Đạo hàm của hàm số lũy thừa

– Hàm số lũy thừa y=xα(α R) có đạo hàm với mọi x > 0 và (xα)'=α.xα -1.

– Ví dụ 2.

a) (x25)'=25.x-35

b) (x7)'=7.x7 -1.

– Chú ý: Công thức tính đạo hàm của hàm hợp đối với hàm số lũy thừa có dạng:

(uα)'=α.uα -1.u'

– Ví dụ 3. Tính đạo hàm của hàm số y=(2x+23x-2)13.

Lời giải:

Ta có:

 y'=13.(2x+23x-2)-23.(2x+23x-2)'=13.(2x+23x-2)-23.(4x+3).

III. Khảo sát hàm số lũy thừa y = xα

Tập xác định của hàm số lũy thừa y=xα luôn chứa khoảng (0;+) với α  R. Trong trường hợp tổng quát, ta khảo sát hàm số y=xα trên khoảng này (gọi là tập khảo sát).

y=xα;α>  0

y=xα;α<   0

1. Tập khảo sát: (0;+)

2. Sự biến thiên

y'=α.xα -1>  0;x>  0.

Giới hạn đặc biệt:

limx0+xα=  0;limx +xα=+

Tiệm cận: Không có

 

 

3. Bảng biến thiên

Bài 2: Hàm số lũy thừa (ảnh 1)

4. Đồ thị (với α > 0)

1. Tập khảo sát: (0;+)

2. Sự biến thiên

y'=α.xα -1<  0;x>  0

Giới hạn đặc biệt:

limx0+xα=+;limx +xα= 0

Tiệm cận:

Trục Ox là tiệm cận ngang.

Trục Oy là tiệm cận đứng của đồ thị.

3. Bảng biến thiên.

Bài 2: Hàm số lũy thừa (ảnh 1)

4. Đồ thị (với α < 0)

 

Bài 2: Hàm số lũy thừa (ảnh 1)

Đồ thị của hàm số lũy thừa y = xα luôn đi qua điểm (1; 1).

– Chú ý: Khi khảo sát hàm số lũy thừa với số mũ cụ thể, ta phải xét hàm số đó trên toàn bộ tập xác định của nó.

Ví dụ 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số y=x-25.

Lời giải:
1. Tập xác định: D=(0;+)

2. Sự biến thiên.

Chiều biến thiên y'=-25x-75

Ta có: y’ < 0 trên khoảng D=(0;+)  nên hàm số đã cho nghịch biến.

Tiệm cận: limx0+y=+;limx+y=  0

Đồ thị có tiệm cận ngang là trục hoành và có tiệm cận đứng là trục tung.

Bảng biến thiên

Bài 2: Hàm số lũy thừa (ảnh 1)

3. Đồ thị

Bài 2: Hàm số lũy thừa (ảnh 1)

 Bảng tóm tắt các tính chất của hàm số lũy thừa y=xα trên khoảng (0;+).

 

α >  0

 α<  0

Đạo hàm

y'=α.xα -1

                   y'=α.xα -1

Chiều biến thiên

Hàm số luôn đồng biến

Hàm số luôn nghịch biến

Tiệm cận

Không có

Tiệm cận ngang là trục Ox;

Tiệm cận đứng là trục Oy

Đồ thị

              Đồ thị luôn đi qua điểm (1; 1).

Câu hỏi mới nhất

Xem thêm »
Xem thêm »