Thứ sáu, 03/01/2025
IMG-LOGO

Câu hỏi:

19/07/2024 219

Khi ánh sáng đi qua một môi trường (chẳng hạn như không khí, nước, sương mù…) cường độ sẽ giảm dần theo quãng đường truyền x, theo công thức I(x)=I0e-μx, trong đó I0 là cường độ của ánh sáng khi bắt đầu truyền vào môi trường và μ là hệ số hấp thụ của môi trường đó. Biết rằng nước biển có hệ số hấp thu μ=1,4 và người ta tính được rằng khi đi từ độ sâu 2m xuống đến độ sâu 20m thì cường độ ánh sáng giảm L.1010 lần. Số nguyên nào sau đây gần với L nhất?

A. 8

B. 10

C. 9

Đáp án chính xác

D. 90

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đặt a=log34, b=log54. Hãy biểu diễn log1280 theo a và b

Xem đáp án » 23/08/2022 3,739

Câu 2:

Cho log214=a. Tính log4932 theo a

Xem đáp án » 23/08/2022 2,845

Câu 3:

Nếu log3=a thì log9000 bằng

Xem đáp án » 23/08/2022 2,708

Câu 4:

Cho các mệnh đề sau:

(I). Cơ số của logarit là số nguyên dương

(II). Chỉ số thực dương mới có logarit

(III). ln(A+B)=lnA+lnB với mọi A>0, B>0 

(IV). logab.logbc.logca=1 với mọi a,b,cR

Số mệnh đề đúng là

Xem đáp án » 23/08/2022 2,610

Câu 5:

Cho a, b là hai số thực dương và a1. Khẳng định nào sau đây đúng?

Xem đáp án » 23/08/2022 2,475

Câu 6:

Cho các số dương a, b, c. Biểu thức S=lnab+lnbc+lncd+lnda bằng:

Xem đáp án » 23/08/2022 2,395

Câu 7:

Với mọi a, b, x là các số thực dương thỏa mãn log2x=5log2a+3log2b. Mệnh đề nào dưới đây là đúng?

Xem đáp án » 23/08/2022 2,135

Câu 8:

Với a, b là các số thực dương bất kì, log2ab2 bằng:

Xem đáp án » 23/08/2022 2,033

Câu 9:

Nếu logab=p thì logaa2b4 bằng

Xem đáp án » 23/08/2022 1,807

Câu 10:

Biết log1520=a+2log32+blog35+c với a,b,cZ. Tính T=a+b+c

Xem đáp án » 23/08/2022 1,735

Câu 11:

Cho các phát biểu sau

(I): Nếu C=AB thì 2lnC=lnA+lnB với A, B là các biểu thức luôn nhận giá trị dương

(II): a-1logax0x1 với a>0, a1

(III): mlogam=nlogan, với m,n>0; a>0, a1

(IV): limx+log12x=-

Số phát biểu đúng là

Xem đáp án » 23/08/2022 1,280

Câu 12:

Cho a>0,a1,b>0 và logab=2. Giá trị của logaba2 bằng

Xem đáp án » 23/08/2022 1,216

Câu 13:

Cho logx=a và ln10=b. Tính log10ex theo a và b

Xem đáp án » 23/08/2022 1,215

Câu 14:

Đặt log260=a; log515=b. Tính P=log212 theo a và b

Xem đáp án » 23/08/2022 1,156

Câu 15:

Cho các số thực dương a, b với a0. Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án » 23/08/2022 1,098

LÝ THUYẾT

I. Khái niệm về lôgarit

1. Định nghĩa

Cho hai số dương a; b với a ≠ 1 . Số α thỏa mãn đẳng thức aα = b được gọi là logarit cơ số a của b và kí hiệu là logab.

α=logabaα=b

Ví dụ 1.

a) log3 27 = 3 vì 33 = 27.

b) log(116)4=-2 4-2=116.

– Chú ý: Không có logarit của số âm và số 0.

2. Tính chất

Cho hai số dương a và b; a ≠  1.  Ta có các tính chất sau đây:

loga1 = 0; logaa = 1

alogab=b;log(aα)a=α

Ví dụ 2.

4-2log43=(4log43)-2=  3-2=19

log(127)3=log3(3-3)=-3

II. Quy tắc tính logarit

1. Logarit của một tích

– Định lí 1. Cho ba số dương a; b1 ;b2 với a ≠ 1. Ta có:

loga(b1.b)2=logab1+logab2

Logarit của một tích bằng tổng các logarit.

Ví dụ 3.

log212+log213=log2(12.13)=log24=2

– Chú ý:

Định lí 1 có thể mở rộng cho tích n số dương:

loga(b1.b2.bn)=logab1+logab+2.+logabn

( a; b1; b2; ..; bn > 0;  a ≠ 1)

 2. Logarit của một thương

– Định lí 2. Cho ba số dương a; b1 ;b2 với a ≠ 1. Ta có:

logab1b2=logab1-logab2

Logarit của một thương bằng hiệu các logarit.

Đặc biệt: loga1b=-logab ( a > 0; b > 0;  a ≠ 1)

– Ví dụ 4log 755-log53=log5753=log525=2

3. Logarit của một lũy thừa.

– Định lí 3. Cho hai số dương a; b và a ≠ 1 . Với mọi số α, ta có:

logabα=αlogab

Logarit của một lũy thừa bằng tích của số mũ với logarit của cơ số.

– Đặc biệt: logabn=1nlogab

– Ví dụ 5.

log367= 6log73{log345=15log34

III. Đổi cơ số.

– Định lí 4. Cho ba số dương a; b; c với a ≠ 1 ;  c ≠ 1, ta có:

logab=logcblogca

– Đặc biệt:

 logab=1logba(b1){logaαb=1αlogab(α 0)

Ví dụ 6. Tính giá trị các biểu thức sau:

a) 5log11258

b) log23.log34..log78

Lời giải:

a) Ta có: log1125  8=log5-38=-13log523

=-13. 3log52= -log52=log52-1=log512

5log11258=  5log512=12.

b) Ta có: log23.log34..log78

=log23.log24log23.log25log24.log28log27=log28=  3

IV. Logarit thập phân. Logarit tự nhiên.

1. Logarit thập phân

Logarit thập phân là logarit cơ số 10.

log10b thường được viết là logb hoặc lgb.

2. Logarit tự nhiên

 – Logarit tự nhiên là logarit cơ số e.

logeb được viết là lnb.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »