Các khí thải gây hiệu ứng nhà kính là nguyên nhân chủ yếu làm trái đất nóng lên. Theo OECD (Tổ chức hợp tác và phát triển kinh tế thế giới), khi nhiệt độ trái đất tăng lên thì tổng giá trị kinh tế toàn cầu giảm. Người ta ước tính rằng khi nhiệt độ trái đất tăng thêm thì tổng giá trị kinh tế toàn cầu giảm 3%, còn khi nhiệt độ trái đất tăng thêm thì tổng giá trị kinh tế toàn càu giảm 10%. Biết rằng nếu nhiệt độ trái đất tăng thêm , tổng giá trị kinh tế toàn cầu giảm (trong đó a, k là các hằng số dương). Nhiệt độ trái đất tăng thêm bao nhiêu độ C thì tổng giá trị kinh tế toàn cầu giảm ?
A.
B.
C.
D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho các mệnh đề sau:
(I). Cơ số của logarit là số nguyên dương
(II). Chỉ số thực dương mới có logarit
(III). ln(A+B)=lnA+lnB với mọi A>0, B>0
(IV). với mọi
Số mệnh đề đúng là
Cho a, b là hai số thực dương và . Khẳng định nào sau đây đúng?
Với mọi a, b, x là các số thực dương thỏa mãn . Mệnh đề nào dưới đây là đúng?
Cho các phát biểu sau
(I): Nếu thì 2lnC=lnA+lnB với A, B là các biểu thức luôn nhận giá trị dương
(II): với a>0,
(III): , với m,n>0; a>0,
(IV):
Số phát biểu đúng là
Cho các số thực dương a, b với . Khẳng định nào sau đây là khẳng định đúng?
I. Khái niệm về lôgarit
1. Định nghĩa
Cho hai số dương a; b với a ≠ 1 . Số α thỏa mãn đẳng thức aα = b được gọi là logarit cơ số a của b và kí hiệu là logab.
Ví dụ 1.
a) log3 27 = 3 vì 33 = 27.
b) vì .
– Chú ý: Không có logarit của số âm và số 0.
2. Tính chất
Cho hai số dương a và b; a ≠ 1. Ta có các tính chất sau đây:
loga1 = 0; logaa = 1
Ví dụ 2.
II. Quy tắc tính logarit
1. Logarit của một tích
– Định lí 1. Cho ba số dương a; b1 ;b2 với a ≠ 1. Ta có:
Logarit của một tích bằng tổng các logarit.
Ví dụ 3.
– Chú ý:
Định lí 1 có thể mở rộng cho tích n số dương:
( a; b1; b2; ..; bn > 0; a ≠ 1)
2. Logarit của một thương
– Định lí 2. Cho ba số dương a; b1 ;b2 với a ≠ 1. Ta có:
Logarit của một thương bằng hiệu các logarit.
Đặc biệt: ( a > 0; b > 0; a ≠ 1)
– Ví dụ 4.
3. Logarit của một lũy thừa.
– Định lí 3. Cho hai số dương a; b và a ≠ 1 . Với mọi số α, ta có:
Logarit của một lũy thừa bằng tích của số mũ với logarit của cơ số.
– Đặc biệt:
– Ví dụ 5.
III. Đổi cơ số.
– Định lí 4. Cho ba số dương a; b; c với a ≠ 1 ; c ≠ 1, ta có:
– Đặc biệt:
Ví dụ 6. Tính giá trị các biểu thức sau:
a)
b)
Lời giải:
a) Ta có:
b) Ta có:
IV. Logarit thập phân. Logarit tự nhiên.
1. Logarit thập phân
Logarit thập phân là logarit cơ số 10.
log10b thường được viết là logb hoặc lgb.
2. Logarit tự nhiên
– Logarit tự nhiên là logarit cơ số e.
logeb được viết là lnb.