Phương trình có tất cả bao nhiêu nghiệm?
A. 0
B. 1
C. 2
D. 3
Điều kiện: x > 0.
Phương trình đã cho
Đáp án cần chọn là: B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho a, b, x là các số thực dương khác 1 thỏa: (1). Mệnh đề (1) tương đương với mệnh đề nào sau đây:
I. Phương trình mũ
1. Phương trình mũ cơ bản
– Phương trình mũ cơ bản có dạng: ax = b (a > 0; a ≠ 1).
Để giải phương trình trên, ta sử dụng định nghĩa logarit.
Với b > 0 ta có: ax = b x = logab.
Với b ≤ 0, phương trình vô nghiệm.
– Minh họa bằng đồ thị
Hoành độ giao điểm của đồ thị hai hàm số y = ax và y = b là nghiệm của phương trình ax = b.
Số nghiệm của phương trình là số giao điểm của hai đồ thị.
Rõ ràng, nếu b ≤ 0 thì hai đồ thị không cắt nhau nên phương trình vô nghiệm.
Nếu b > 0 ta có hai đồ thị như hình dưới đây. Trên mỗi hình, hai đồ thị luôn cắt nhau tại một điểm nên phương trình có nghiệm duy nhất.
Kết luận:
– Ví dụ 1. Giải phương trình 2x + 1 + 2x + 2 = 16.
Lời giải:
Ta có: 2x + 1 + 2x + 2 = 16.
2.2x + 4.2x = 16
Vậy .
2. Cách giải một số phương trình mũ cơ bản
a) Đưa về cùng cơ số.
– Ví dụ 2. Giải phương trình
Lời giải:
Ta có:
x + 2 = 2x – 6
Vậy x = 8.
b) Đặt ẩn phụ
– Ví dụ 3. Giải phương trình 4x – 5. 2x + 6 = 0
Lời giải:
Đặt t = 2x (với t > 0)
Phương trình đã cho trở thành: t2 – 5t + 6 = 0
Vậy phương trình đã cho có 2 nghiệm là x = 1 và x = log23.
c) Logarit hóa.
– Ví dụ 4. Giải phương trình:
Lời giải:
Lấy logarit cơ số 3 hai vế ta được:
Vậy phương trình đã cho có 2 nghiệm là x = 0 và x = – log53.
II. Phương trình logarit
– Phương trình logarit là phương trình có chứa ẩn số trong biểu thức dưới dấu logarit.
– Ví dụ 5. Các phương trình … đều là phương trình logarit.
1. Phương trình logarit cơ bản
– Phương trình logarit cơ bản có dạng: logax = b (a > 0; a ≠ 1).
Theo định nghĩa logarit ta có:
logax = b x = ab
– Minh họa bằng đồ thị
Vẽ đồ thị hàm số y = loga x và đường thẳng b trên cùng một hệ tọa độ.
Trong cả hai trường hợp, ta đều thấy đồ thị của các hàm số y = logax và đường thẳng y = b luôn cắt nhau tại một điểm với mọi b.
Kết luận: Phương trình logax = b (a > 0; a ≠ 1) luôn có nghiệm duy nhất x = ab với mọi b.
2. Cách giải một số phương trình logarit đơn giản.
a) Đưa về cùng cơ số
Ví dụ 6. Giải phương trình log3x + log9x = 6.
Lời giải:
Ta có: log3x + log9x = 6
Vậy nghiệm của phương trình đã cho là x = 81.
b) Đặt ẩn phụ
– Ví dụ 7. Giải phương trình
Lời giải:
Đặt t =log5x, phương trình đã cho trở thành:
t2 + 3t = 0 nên t = 0 hoặc t = –3.
Với t = 0 thì log5x = 0 nên x = 1.
Với t = –3 thì log5x = –3 nên x = 5–3.
Vậy phương trình đã cho có 2 nghiệm là x = 1 và x = 5–3.
c) Mũ hóa
– Ví dụ 8. Giải phương trình: log3(90 – 3x) = x + 2
Lời giải:
Điều kiện của phương trình là 90 – 3x > 0.
Phương trình đã cho tương đương với:
90 – 3x = 3x + 2 hay 90 – 3x = 9.3x
Vậy nghiệm của phương trình đã cho là x = 2.