Cho giới hạn \[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x}\], chọn mệnh đề đúng:
A.\[{I^2} + 3I = 2\]
B. \[{I^3} + {I^2} - 2 = 0\]
C. \[\frac{{I - 1}}{{I + 1}} = 1\]
D. \[3I - 2 = 2{I^2}\]
Ta có:\[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{e^{3x}} - 1} \right) - \left( {{e^{2x}} - 1} \right)}}{x}\]
\[ = \mathop {\lim }\limits_{x \to 0} \left[ {3.\frac{{{e^{3x}} - 1}}{{3x}} - 2.\frac{{{e^{2x}} - 1}}{{2x}}} \right] = 3.1 - 2.1 = 1\]
Do đó, thay I=1 vào các đáp án ta được đáp án B.
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Hàm số nào sau đây nghịch biến trên \[\left( { - \infty ; + \infty } \right)\]?
Cho các đồ thị hàm số \[y = {a^x},y = {b^x},y = {c^x}(0 < a,b,c \ne 1)\] chọn khẳng định đúng:
Cho hai hàm số \[y = {a^x},y = {b^x}\] với \[1 \ne a,b > 0\;\]lần lượt có đồ thị là (C1),(C2) như hình bên. Mệnh đề nào đúng?
Tính đạo hàm của hàm số \[y = f\left( x \right) = {x^\pi }.{\pi ^x}\] tại điểm x=1.