Cho hàm số \(y = f\left( x \right)\)là hàm bậc 4 có đồ thị \[\left( C \right)\] và \[d\] là tiếp tuyến của đồ thị \[\left( C \right)\] tại 2 điểm như hình vẽ.
Biết diện tích hình phẳng giới hạn bởi đồ thị \[\left( C \right)\] và đường thẳng \[d\] là \(\frac{{11}}{3}\). Khi đó \(\int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} \) bằng:
A. \(\frac{{19}}{6}\).
B. \(\frac{{25}}{6}\).
C. \(\frac{{23}}{6}\).
D. \(\frac{{13}}{3}\).
Lời giải
+ Phương trình đường thẳng d đi qua \(A\left( { - 1;\frac{3}{2}} \right)\) và \(B\left( {1; - 1} \right)\) là:\(y = - \frac{5}{4}x + \frac{1}{4}\).
+ Diện tích hình phẳng giới hạn bởi đồ thị \[\left( C \right)\] và đường thẳng \[d\] là:
\[S = \int\limits_{ - 1}^1 {\left| {f(x) - \left( { - \frac{5}{4}x + \frac{1}{4}} \right)} \right|} {\rm{d}}x = \frac{{11}}{3}\,\,\,\,\]
Từ hình vẽ ta có: \[\int\limits_{ - 1}^1 {\left[ {f(x) - \left( { - \frac{5}{4}x + \frac{1}{4}} \right)} \right]} {\rm{d}}x = \frac{{11}}{3} \Leftrightarrow \int\limits_{ - 1}^1 {f(x){\rm{d}}x + \int\limits_{ - 1}^1 {\left( {\frac{5}{4}x - \frac{1}{4}} \right)} } {\rm{d}}x = \frac{{11}}{3}\,\]
\[ \Leftrightarrow \int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x + \left( { - \frac{1}{2}} \right)} = \frac{{11}}{3}\,\,\,\,\,\,\,\, \Leftrightarrow \int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} = \frac{{11}}{3} + \frac{1}{2} = \frac{{25}}{6}\].
Kết luận \(\int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} = \frac{{25}}{6}\).
Chọn đáp án B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian \[Oxyz\], cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y - 12z + 41 = 0\). Từ điểm \(M\left( {2;\, - 1;\,3} \right)\) kẻ ba tiếp tuyến phân biệt \(MA,\,MB,\,MC\) đến mặt cầu (\(A,\,B,\,C\) là các tiếp điểm). Khi đó phương trình mặt phẳng \[\left( {ABC} \right)\] có dạng \[x + by + cz + d = 0\]. Giá trị \[b + c + d\] bằng
Bạn muốn mua một áo sơ mi cỡ 40 hoặc 41. Áo cỡ 40 có 6 màu khác nhau, áo cỡ 41 có 4 màu khác nhau. Hỏi bạn có bao nhiêu cách chọn?
Có bao nhiêu cặp số nguyên \(a,\,\,b\) thỏa mãn đồng thời các điều kiện \({a^2} + {b^2} >1\) và \({a^2} + {b^2} - 3 \le {\log _{{a^2} + {b^2}}}\left( {\frac{{{b^2}\left( {{a^2} + {b^2} + 4} \right) + 4{a^2}}}{{{a^2} + 2{b^2}}}} \right)\)?
Thể tích của khối lăng trụ có đáy là hình vuông cạnh 2 và chiều cao 3 bằng
Cho hàm số \(y = \left| {\frac{1}{{x + 3}} - \frac{1}{x} + \frac{1}{{x - 2}} - \frac{1}{{x - 5}} - m} \right|\), với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để hàm số đã cho có giá trị nhỏ nhất trên \(\left( { - 3\,;5} \right)\backslash \left\{ {0\,;2} \right\}\) là một số dương?
Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 2\) và công bội \(q = - 3\). Số số hạng thứ 4 của cấp số nhân bằng
Cho số phức \(z = 2 + mi\,\,\left( {m \in \mathbb{R}} \right)\)thỏa \(\left( {2z - i} \right)\left( {2\overline z - 2} \right)\) là số thực. Giá trị \(\left| {2z - 3} \right|\) bằng
Cho mặt cầu có diện tích là \(16\pi {a^2}\). Thể tích của khối cầu đã cho bằng
Cho khối lăng trụ \[ABC.A'B'C'\] đáy là tam giác vuông cân tại \[A\]. Hình chiếu của \[A'\] lên mặt phẳng \[(ABC)\] là trung điểm \[H\] của đoạn \[AB\], khoảng cách giữa \[A'H\] và \[BC'\] bằng \[\frac{{4\sqrt 5 }}{5}\] và \[AA' = 3\]. Thể tích khối lăng trụ \[ABC.A'B'C'\] bằng
Tập xác định của hàm số \(y = {\log _3}\left( {4 - {x^2}} \right) + {2^{1 - 2x}}\) là
Cho \(a\) là một số thực dương khác 1, khi đó \({\log _a}\sqrt[3]{a}\)bằng:
Trong không gian \(Oxyz\), cho điểm \(A\left( {1\,;\,2;\, - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,x + y - 2z + 5 = 0\). Đường thẳng \(d\) đi qua \(A\) và vuông góc với \(\left( P \right)\) đi qua điểm nào sau đây?