Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) là
Đáp án D
Ta có: BPT . Do đó có 4 giá trị nguyên thỏa mãn.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 10 điểm trên?
Trong hệ trục Oxyz cho mặt cầu có phương trình \({x^2} + {y^2} + {z^2} - 2{\rm{z}} + 4y + 6{\rm{z}} - 1 = 0\). Xác định tâm và bán kính của mặt cầu.
Trong hình vẽ bên điểm M biểu diễn số phức \({z_1}\), điểm N biểu diễn số phức \({z_2}\). Hỏi trung điểm của đoạn MN là điểm biểu diễn hình học của số phức nào sau đây
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng \(\sqrt 2 a\). Độ lớn của góc giữa đường thẳng SA và mặt phẳng đáy bằng
Đường cong ở hình bên là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Cho hình lập phương \(ABC{\rm{D}}{\rm{.A'B'C'D'}}\) có diện tích tam giác \(AC{\rm{D'}}\) bằng \({a^2}\sqrt 3 \). Tính thể tích V của khối lập phương.
Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ bên. Diện tích phần hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) với trục Ox nằm phía trên và phía dưới trục Ox lần lượt là 3 và 1. Khi đó \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} \) bằng
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = 2{\rm{x}} + {e^x}\) thỏa mãn \(F\left( 0 \right) = 2019\). Tính \(F\left( 1 \right)\).
Cho hàm số \(y = f\left( x \right){\rm{ }}\left( C \right)\) xác định trên \(\mathbb{R}\) và thỏa mãn \({f^3}\left( {1 - x} \right) + f\left( {1 - {x^2}} \right) = x + 1{\rm{ }}\left( {\forall x \in \mathbb{R}} \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục tung có dạng \(y = ax + b\). Giá trị của biểu thức \(T = 5{\rm{a}} + 2b\) bằng
Tìm m để phương trình \(\log _2^2x - {\log _2}{x^2} + 3 = m\) có nghiệm \(x \in \left[ {1;8} \right]\).
Trong không gian với hệ tọa độ Oxyz cho điểm \(A\left( {1; - 1;2} \right)\) và mặt phẳng \(\left( P \right):2{\rm{x}} - y + z + 1 = 0\). Mặt phẳng \(\left( Q \right)\) đi qua điểm A và song song với \(\left( P \right)\). Phương trình mặt phẳng \(\left( Q \right)\) là
Cho hàm số \(f\left( x \right) = \frac{{\ln \left( {{x^2} + 1} \right)}}{x}\) thỏa mãn \(f'\left( 1 \right) = a\ln 2 + b\) với \(a,b \in \mathbb{Z}\). Giá trị của \(a + b\) bằng
Phương trình đường thẳng song song với đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 2}}{1} = \frac{z}{{ - 1}}\) và cắt hai đường thẳng \({d_1}:\frac{{x + 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 2}}{{ - 1}}\) và \({d_2}:\frac{{x - 1}}{{ - 1}} = \frac{{y - 2}}{1} = \frac{{z - 3}}{3}\) là
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Biết \(f\left( 4 \right) = 1\) và \(\int\limits_{ - 2}^2 {xf\left( {x + 2} \right)d{\rm{x}}} = 5\) khi đó \(\int\limits_0^4 {\left[ {{x^2}f'\left( x \right) + 4f\left( x \right)} \right]d{\rm{x}}} \) bằng
Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên. Bất phương trình \(3f\left( x \right) \le {x^3} - 3{{\rm{x}}^2} + m\) đúng với mọi \(x \in \left( { - 1;3} \right)\) khi và chỉ khi