Có 9 tấm thẻ được đánh số từ 1 đến 9. Chọn ngẫu nhiên ra 2 tấm thẻ bất kỳ. Tính xác suất để tích của hai số trên 2 tấm thẻ đã lấy là một số chẵn.
Đáp án A
Gọi \(\Omega \) là số cách lấy ra 2 tấm thẻ trong 9 số ta có: \(\left| \Omega \right| = C_9^2 = 36\)
Gọi A là biến cố “tích của 2 số trên 2 tấm thẻ là số chẵn” ta xét 2 trường hợp.
TH1: Cả 2 tấm thẻ đều mang số chẵn. Vì có 4 số thẻ mang số chẵn nên có \(C_4^2 = 6\).
TH2: Có một tấm thẻ mang số chẵn và một tấm thẻ mang số lẻ có: \(C_4^1.C_5^1 = 20\).
Vậy xác suất cần tính là: \(P\left( A \right) = \frac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega \right|}} = \frac{{6 + 20}}{{36}} = \frac{{13}}{{18}}\).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 10 điểm trên?
Trong hình vẽ bên điểm M biểu diễn số phức \({z_1}\), điểm N biểu diễn số phức \({z_2}\). Hỏi trung điểm của đoạn MN là điểm biểu diễn hình học của số phức nào sau đây
Trong hệ trục Oxyz cho mặt cầu có phương trình \({x^2} + {y^2} + {z^2} - 2{\rm{z}} + 4y + 6{\rm{z}} - 1 = 0\). Xác định tâm và bán kính của mặt cầu.
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng \(\sqrt 2 a\). Độ lớn của góc giữa đường thẳng SA và mặt phẳng đáy bằng
Đường cong ở hình bên là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Cho hình lập phương \(ABC{\rm{D}}{\rm{.A'B'C'D'}}\) có diện tích tam giác \(AC{\rm{D'}}\) bằng \({a^2}\sqrt 3 \). Tính thể tích V của khối lập phương.
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = 2{\rm{x}} + {e^x}\) thỏa mãn \(F\left( 0 \right) = 2019\). Tính \(F\left( 1 \right)\).
Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ bên. Diện tích phần hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) với trục Ox nằm phía trên và phía dưới trục Ox lần lượt là 3 và 1. Khi đó \(\int\limits_{ - 2}^3 {f\left( x \right)d{\rm{x}}} \) bằng
Cho hàm số \(y = f\left( x \right){\rm{ }}\left( C \right)\) xác định trên \(\mathbb{R}\) và thỏa mãn \({f^3}\left( {1 - x} \right) + f\left( {1 - {x^2}} \right) = x + 1{\rm{ }}\left( {\forall x \in \mathbb{R}} \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục tung có dạng \(y = ax + b\). Giá trị của biểu thức \(T = 5{\rm{a}} + 2b\) bằng
Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) là
Tìm m để phương trình \(\log _2^2x - {\log _2}{x^2} + 3 = m\) có nghiệm \(x \in \left[ {1;8} \right]\).
Trong không gian với hệ tọa độ Oxyz cho điểm \(A\left( {1; - 1;2} \right)\) và mặt phẳng \(\left( P \right):2{\rm{x}} - y + z + 1 = 0\). Mặt phẳng \(\left( Q \right)\) đi qua điểm A và song song với \(\left( P \right)\). Phương trình mặt phẳng \(\left( Q \right)\) là
Cho hàm số \(f\left( x \right) = \frac{{\ln \left( {{x^2} + 1} \right)}}{x}\) thỏa mãn \(f'\left( 1 \right) = a\ln 2 + b\) với \(a,b \in \mathbb{Z}\). Giá trị của \(a + b\) bằng
Phương trình đường thẳng song song với đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 2}}{1} = \frac{z}{{ - 1}}\) và cắt hai đường thẳng \({d_1}:\frac{{x + 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 2}}{{ - 1}}\) và \({d_2}:\frac{{x - 1}}{{ - 1}} = \frac{{y - 2}}{1} = \frac{{z - 3}}{3}\) là
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Biết \(f\left( 4 \right) = 1\) và \(\int\limits_{ - 2}^2 {xf\left( {x + 2} \right)d{\rm{x}}} = 5\) khi đó \(\int\limits_0^4 {\left[ {{x^2}f'\left( x \right) + 4f\left( x \right)} \right]d{\rm{x}}} \) bằng