Trong không gian tọa độ Oxyz, cho ba mặt phẳng (\[\left( {{P_1}} \right):\;2x + y + 2z - 5 = 0,\;\left( {{P_2}} \right):\;2x + y + 2z + 13 = 0,\] \[\left( Q \right):\;2x - 2y - z - 5 = 0,\] và điểm \[A\left( { - 2;0;0} \right)\] nằm giữa hai mặt phẳng \[\left( {{P_1}} \right),\;\left( {{P_2}} \right).\] Mặt cầu (S) có tâm \[I\left( {a;b;c} \right)\] luôn đi qua A và tiếp xúc với hai mặt phẳng \[\left( {{P_1}} \right),\;\left( {{P_2}} \right).\] Khi khối cầu \[\left( S \right)\] cắt mặt phẳng (Q) theo thiết diện là hình tròn có diện tích lớn nhất thì \[a + b - 2c\] bằng
Đáp án B
Mặt phẳng cách đều hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\) có phương trình dạng \(\left( P \right):2x + y + 2z + D = 0\)
Lại có \(d\left( {{P_1};P} \right) = d\left( {{P_2};P} \right) \Leftrightarrow \frac{{\left| {D + 5} \right|}}{{\sqrt {4 + 1 + 4} }} = \frac{{\left| {D - 13} \right|}}{{\sqrt {4 + 1 + 4} }} \Leftrightarrow \left| {P + 5} \right| = \left| {P - 13} \right| \Leftrightarrow \left[ \begin{array}{l}{\rm{D}} + 5 = D - 13\\D + 5 = 13 - D\end{array} \right. \Leftrightarrow D = 4\)
Vậy \(\left( P \right):2x + y + 2z + 4 = 0.\) Tâm \(I \in \left( P \right)\) và điểm \(A \in \left( P \right)\)
Điểm I nằm trên giao tuyến của mặt cầu \(\left( {A;R} \right)\) với \(R = d\left( {{P_1};\left( P \right)} \right) = 3\) và mặt phẳng \(\left( P \right)\)
Mặt phẳng \(\left( P \right) \bot \left( Q \right)\), để \(\left( S \right)\) cắt mặt phẳng \(\left( Q \right)\) theo thiết diện là hình tròn có diện tích lớn nhất thì \(d{\left( {I;\left( Q \right)} \right)_{\min }}\)
Để \(d{\left( {I;\left( Q \right)} \right)_{\min }}\) thì \(I = AH \cap \left( {A;R} \right),\) phương trình \(AH:\left\{ \begin{array}{l}x = - 2 + 2t\\y = - 2t\\z = - t\end{array} \right.\)
Gọi \(I\left( { - 2 + 2t; - 2t; - t} \right) \Rightarrow I{A^2} = 9{t^2} = 9 \Leftrightarrow t = \pm 1 \Rightarrow \left[ \begin{array}{l}I\left( {0; - 2; - 1} \right)\\I\left( { - 4;2;1} \right)\end{array} \right.\)
Kiểm tra khoảng cách từ I đến \(\left( Q \right)\) suy ra \(I\left( {0; - 2; - 1} \right)\) là điểm cần tìm.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho phương trình \[{\log _3}^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0\]. Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc \[\left[ {1;81} \right]\] là
Cho \[\int\limits_0^3 {f\left( x \right)dx} = 2\]. Tính giá trị của tích phân \[L = \int\limits_0^3 {\left[ {2f\left( x \right) - {x^2}} \right]dx} \].
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \[{d_1}:\;\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{3} = \frac{{z - 1}}{2}\] và \[{d_2}:\;\left\{ \begin{array}{l}x = 1 - 3t\\y = - 2 + t\\z = - 1 - t\end{array} \right..\] Phương trình đường thẳng \[\Delta \] nằm trong mặt phẳng \[\left( P \right):\;x + 2y - 3z - 2 = 0\] cắt cả hai đường thẳng \[{d_1}\] và \[{d_2}\] là
Kí hiệu \[{z_1},{z_2},{z_3},{z_4}\] là bốn nghiệm phức của phương trình \[{z^4} + 3{z^2} - 4 = 0.\] Tính tổng \[T = \left| {{z_1}} \right| + {\left| z \right|_2} + \left| {{z_3}} \right| + \left| {{z_4}} \right|.\]
Biết \[\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = a\ln 2 + b\ln 3 + c\ln 5 + d\ln 7} \] với \[a,b,c,d\] là các số nguyên. Tính \[P = ab + cd.\]
Bất phương trình \[{4^x} - \left( {m + 1} \right){2^{x + 1}} + m \ge 0\] nghiệm đúng với mọi \[x \ge 0\]. Tập tất cả các giá trị của m là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \[B,AB = 3a,BC = 4a\]. Cạnh bên SA vuông góc với mặt phẳng đáy. Góc tạo bởi giữa SC và mặt phẳng đáy bằng \[{60^0}\]. Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng:
Cho cấp số cộng có \[{u_1} = - 3;{u_{10}} = 24\]. Tìm công sai d?
Cho hàm số f(x) liên tục trên \[\left[ {0;{\mkern 1mu} 1} \right].\] Biết \[\int\limits_0^1 {\left[ {x.{\mkern 1mu} f'\left( {1 - x} \right) - f\left( x \right)} \right]{\mkern 1mu} {\rm{d}}x} = \frac{1}{2},\] tính \[f\left( 0 \right).\]
Có bao nhiêu số phức z thỏa mãn \[\left| {z - 2 + i} \right| = \left| {z + 1 - 2i} \right|\] và \[\left| {z + 4 - 2i} \right| = 3\sqrt 2 ?\]
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x - y + z + 4 = 0\]. Khi đó mặt phẳng (P) có một vectơ pháp tuyến là
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng \[x = 1\] và \[x = 4\], biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục \[Ox\] tại điểm có hoành độ \[x\] (\[1 \le x \le 4\]) thì được thiết diện là một hình lục giác đều có độ dài cạnh là \[2x\].
Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có đồ thị \[y = f'\left( x \right)\] như hình vẽ. Đặt \[g\left( x \right) = 2f\left( x \right) - {\left( {x - 1} \right)^2}.\] Khi đó giá trị nhỏ nhất của hàm số \[y = g\left( x \right)\] trên đoạn \[\left[ { - 3;3} \right]\] bằng