IMG-LOGO

Câu hỏi:

18/07/2024 115

Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng

A. 4.                       

B. 8.                       

C. 6.                       

Đáp án chính xác

D. 7.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Ta có \(\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} = \int\limits_0^{\frac{\pi }{2}} {\cos xdx + \int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = \sin x\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{2}}} \right. + 5 = 6.} \)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một hộp đựng 9 thẻ được đánh số 1, 2, 3, 4, ……, 9. Rút ngẫu nhiên đồng thời 2 thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để tích nhận được là số chẵn.

Xem đáp án » 08/09/2022 161

Câu 2:

Cho hai số phức \[{z_1},{z_2}\] thỏa mãn \[\left| {{z_1} - {z_2}} \right| = \left| {{z_1}} \right| = \left| {{z_2}} \right| > 0\]. Tính \[{\left( {\frac{{{z_1}}}{{{z_2}}}} \right)^4} + {\left( {\frac{{{z_2}}}{{{z_1}}}} \right)^4}\].

Xem đáp án » 08/09/2022 130

Câu 3:

Trong không gian Oxyz, cho vectơ \[\vec a = 2\vec i + \vec k - 3\vec j.\] Tọa độ của vectơ \[\vec a\]

Xem đáp án » 08/09/2022 119

Câu 4:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng d và vuông góc với mặt phẳng (P). Tính \[a + b + c.\]

Xem đáp án » 08/09/2022 118

Câu 5:

Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]

Xem đáp án » 08/09/2022 114

Câu 6:

Một cái trục lăn sơn nước có dạng một hình trụ. Đường kính của đường tròn đáy là 6cm, chiều dài lăn là 25cm (như hình vẽ). Sau khi lăn trọn 10 vòng thì trục lăn tạo nên bức tường phẳng có diện tích là

Một cái trục lăn sơn nước có dạng một hình trụ. Đường kính của đường (ảnh 1)

Xem đáp án » 08/09/2022 111

Câu 7:

Trong không gian Oxyz, cho ba điểm \[A\left( {1;0;0} \right)\], \[B\left( {0;2;0} \right)\], \[C\left( {0;0;3} \right)\]. Tập hợp các điểm M thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bằng

Xem đáp án » 08/09/2022 108

Câu 8:

Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.

Xem đáp án » 08/09/2022 105

Câu 9:

Điểm M như hình vẽ bên là điểm biểu diễn số phức nào dưới đây?

Điểm M như hình vẽ bên là điểm biểu diễn số phức nào dưới đây?  (ảnh 1)

Xem đáp án » 08/09/2022 105

Câu 10:

Cho tứ diện ABCD có \[AB,{\rm{ }}AC,{\rm{ }}AD\] đôi một vuông góc với nhau và \[AB = 2a,{\rm{ }}AC = 3a,{\rm{ }}AD = 4a.\] Thể tích của khối tứ diện ABCD bằng

Xem đáp án » 08/09/2022 105

Câu 11:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau:    Phương trình  (ảnh 1)

Phương trình \[f\left( x \right) - 7 = 0\] có số nghiệm thực là

Xem đáp án » 08/09/2022 104

Câu 12:

Cho a và b là hai số thực dương khác 1 và các hàm số \[y = {a^x},{\rm{ }}y = {b^x}\] có đồ thị như hình vẽ.

Cho a và b là hai số thực dương khác 1 và các hàm số (ảnh 1)

Đường thẳng \[y = 3\] cắt trục tung, đồ thị hàm số \[y = {a^x},{\rm{ }}y = {b^x}\] lần lượt tại các điểm \[H,{\rm{ }}M,{\rm{ }}N.\] Biết rằng \[HM = 2MN.\] Mệnh đề nào sau đây đúng?

Xem đáp án » 08/09/2022 104

Câu 13:

Trong không gian, cho hình trụ (T). Mặt phẳng (α) song song với trục của (T), cắt (T) theo thiết diện (D) là một hình vuông có diện tích bằng \[64c{m^2}.\] Khoảng cách từ trục của (T) đến mặt phẳng chứa (D) bằng 3cm. Tính thể tích của khối trụ đã cho.

Xem đáp án » 08/09/2022 104

Câu 14:

Cho hàm số f(x) liên tục trên khoảng \[\left( {0; + \infty } \right)\] thỏa mãn \[f\left( 1 \right) = 1\] \[f'\left( x \right) \ge x + \frac{1}{x},{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right)\]. Tìm giá trị nhỏ nhất của \[f\left( 2 \right)\].

Xem đáp án » 08/09/2022 102

Câu 15:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\]

Xem đáp án » 08/09/2022 100

Câu hỏi mới nhất

Xem thêm »
Xem thêm »