IMG-LOGO

Câu hỏi:

21/07/2024 87

Biết hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) = 3{x^2} + 2x - m + 1\] \[f\left( 2 \right) = 1\]. Đồ thị của hàm số \[y = f\left( x \right)\] cắt trục tung tại điểm có tung độ bằng −5. Giá trị của \[f\left( 3 \right)\]

A. 22.                     

Đáp án chính xác

B. \[ - 22.\]             

C. 3.                       

D. \[ - 3.\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Ta có \[f\left( x \right) = \int {\left( {3{x^2} + 2x - m + 1} \right)dx} = {x^3} + {x^2} + \left( {1 - m} \right)x + C\].

Bài ra, ta có \[\left\{ \begin{array}{l}f\left( 2 \right) = 1\\f\left( 0 \right) = - 5\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2\left( {1 - m} \right) + C + 12 = 1\\C = - 5\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m = 4\\C = - 5\end{array} \right.\]

\[ \Rightarrow f\left( x \right) = {x^3} + {x^2} - 3x - 5 \Rightarrow f\left( 3 \right) = 22\].

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \[a,{\rm{ }}b\] là các số thực dương thỏa mãn \[{a^2} + {b^2} = 8ab.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án » 08/09/2022 204

Câu 2:

Biết rằng \[\int\limits_2^3 {\frac{{x + 1}}{{x\left( {x - 2} \right) + 1}}dx} = a + b\ln 2,\] với \[a,{\rm{ }}b \in \mathbb{Z}.\] Tính \[S = a + 2b.\]

Xem đáp án » 08/09/2022 170

Câu 3:

Tính thể tích của khối lập phương \[ABCD.A'B'C'D'\], biết \[AC' = 2a\sqrt 3 .\]

Xem đáp án » 08/09/2022 165

Câu 4:

Cho hàm số \[y = {x^3} - 3m{x^2} + 3\left( {2{m^2} - 10m + 9} \right)x\]. Có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có hai điểm cực trị?

Xem đáp án » 08/09/2022 154

Câu 5:

Tìm số tiệm cận đứng của đồ thị hàm số \[y = \frac{{\sqrt {x + 1} + \sqrt {x + 4} - 3}}{{{x^3} - x}}.\]

Xem đáp án » 08/09/2022 130

Câu 6:

Tính môđun của số phức z thỏa mãn \[z\left( {1 - i} \right) + 2i = 1.\]

Xem đáp án » 08/09/2022 126

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \[AC = \frac{{a\sqrt 2 }}{2}.\] Cạnh bên SA vuông góc với mặt phẳng đáy và đường thẳng SB tạo với mặt phẳng \[\left( {ABCD} \right)\] một góc \[60^\circ .\] Khoảng cách giữa hai đường thẳng \[AD\]\[SC\] bằng

Xem đáp án » 08/09/2022 125

Câu 8:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau:   Phương trình (ảnh 1)

Phương trình \[3f\left( x \right) - 2 = 0\] có số nghiệm thực là

Xem đáp án » 08/09/2022 120

Câu 9:

Trong không gian Oxyz, cho hai đường thẳng \[{d_1}:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\] \[{d_2}:\frac{{x + 4}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 3}}{1}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng \[{d_1}\] và song song với đường thẳng \[{d_2}.\] Tính \[a + b + c.\]

Xem đáp án » 08/09/2022 119

Câu 10:

Cho hàm số f(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \[y = f\left[ {f\left( x \right)} \right]\].

Cho hàm số f(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số (ảnh 1)

Xem đáp án » 08/09/2022 119

Câu 11:

Cho a và b là hai số thực dương tùy ý. Mệnh đề nào dưới đây là đúng?

Xem đáp án » 08/09/2022 116

Câu 12:

Cho hai số phức z, w thỏa mãn \[\left| {z + 2w} \right| = 3\], \[\left| {2z + 3w} \right| = 6\] \[\left| {z + 4w} \right| = 7\]. Tính giá trị của biểu thức \[P = z.\bar w + \bar z.w\].

Xem đáp án » 08/09/2022 116

Câu 13:

Tập nghiệm của phương trình \[\frac{1}{2}{\log _3}{\left( {x + 2} \right)^2} + \frac{1}{3}{\log _3}{\left( {4x - 1} \right)^3} = 2\]

Xem đáp án » 08/09/2022 115

Câu 14:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ. Bất phương trình \[f\left( x \right) > {x^3} + 4x + m\] nghiệm đúng với mọi \[x \in \left( {0;2} \right)\] khi và chỉ khi

Cho hàm số y = f(x) có đạo hàm liên tục trên R (ảnh 1)

Xem đáp án » 08/09/2022 115

Câu 15:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm tại \[x = 1\]\[f'\left( 1 \right) \ne 0.\] Gọi \[{d_1}\], \[{d_2}\] lần lượt là hai tiếp tuyến của đồ thị hàm số \[y = f\left( x \right)\]\[y = g\left( x \right) = x.f\left( {2x - 1} \right)\] tại điểm có hoành độ \[x = 1.\] Biết rằng hai đường thẳng \[{d_1}\], \[{d_2}\] vuông góc với nhau. Khẳng định nào sau đây đúng?

Xem đáp án » 08/09/2022 115

Câu hỏi mới nhất

Xem thêm »
Xem thêm »