Xét các số thực \[a,{\rm{ }}b\] thỏa mãn điều kiện \[\frac{1}{3} < b < a < 1\]. Tìm giá trị nhỏ nhất của biểu thức \[P = {\log _a}\left( {\frac{{3b - 1}}{4}} \right) + 12\log _{\frac{b}{a}}^2a - 3.\]
Đáp án C
Ta có \[\frac{{3b - 1}}{4} \le {b^3} \Leftrightarrow 4{b^3} - 3b + 1 \ge 0 \Leftrightarrow \left( {b + 1} \right)\left( {4{b^2} - 4b + 1} \right) \ge 0\]
\[ \Leftrightarrow \left( {b + 1} \right){\left( {2b - 1} \right)^2} \ge 0\] luôn đúng với \[\frac{1}{3} < b < 1.\]
\[ \Rightarrow {\log _a}\left( {\frac{{3b - 1}}{4}} \right) \ge {\log _a}{b^3}\] (vì \[a < 1\]) \[ \Rightarrow {\log _a}\left( {\frac{{3b - 1}}{4}} \right) \ge 3{\log _a}b\].
Biến đổi \[{\log _{\frac{b}{a}}}a = \frac{1}{{{{\log }_a}\frac{b}{a}}} = \frac{1}{{{{\log }_a}b - 1}}\]
\[ \Rightarrow P \ge 3{\log _a}b + \frac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}} - 3 = 3\left( {{{\log }_a}b - 1} \right) + \frac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}}\].
Bài ra \[\frac{1}{3} < b < a < 1 \Rightarrow {\log _a}b > 1\].
Đặt \[t = {\log _a}b - 1 > 0 \Rightarrow P \ge 3t + \frac{{12}}{{{t^2}}} = \frac{{3t}}{2} + \frac{{3t}}{2} + \frac{{12}}{{{t^2}}} \ge 3.\sqrt {\frac{{3t}}{2}.\frac{{3t}}{2}.\frac{{12}}{{{t^2}}}} = 9\].
Dấu “=” xảy ra \[\left\{ \begin{array}{l}b = \frac{1}{2}\\\frac{{3t}}{2} = \frac{{12}}{{{t^2}}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{1}{2}\\t = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{1}{2}\\b = {a^3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{1}{2}\\a = \frac{1}{{\sqrt[3]{2}}}\end{array} \right.\].
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho \[a,{\rm{ }}b\] là các số thực dương thỏa mãn \[{a^2} + {b^2} = 8ab.\] Mệnh đề nào dưới đây là đúng?
Biết rằng \[\int\limits_2^3 {\frac{{x + 1}}{{x\left( {x - 2} \right) + 1}}dx} = a + b\ln 2,\] với \[a,{\rm{ }}b \in \mathbb{Z}.\] Tính \[S = a + 2b.\]
Tính thể tích của khối lập phương \[ABCD.A'B'C'D'\], biết \[AC' = 2a\sqrt 3 .\]
Cho hàm số \[y = {x^3} - 3m{x^2} + 3\left( {2{m^2} - 10m + 9} \right)x\]. Có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có hai điểm cực trị?
Tìm số tiệm cận đứng của đồ thị hàm số \[y = \frac{{\sqrt {x + 1} + \sqrt {x + 4} - 3}}{{{x^3} - x}}.\]
Tính môđun của số phức z thỏa mãn \[z\left( {1 - i} \right) + 2i = 1.\]
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \[AC = \frac{{a\sqrt 2 }}{2}.\] Cạnh bên SA vuông góc với mặt phẳng đáy và đường thẳng SB tạo với mặt phẳng \[\left( {ABCD} \right)\] một góc \[60^\circ .\] Khoảng cách giữa hai đường thẳng \[AD\] và \[SC\] bằng
Cho hàm số f(x) có bảng biến thiên như sau:
Phương trình \[3f\left( x \right) - 2 = 0\] có số nghiệm thực là
Trong không gian Oxyz, cho hai đường thẳng \[{d_1}:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\] và \[{d_2}:\frac{{x + 4}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 3}}{1}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng \[{d_1}\] và song song với đường thẳng \[{d_2}.\] Tính \[a + b + c.\]
Cho hàm số f(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \[y = f\left[ {f\left( x \right)} \right]\].
Cho hai số phức z, w thỏa mãn \[\left| {z + 2w} \right| = 3\], \[\left| {2z + 3w} \right| = 6\] và \[\left| {z + 4w} \right| = 7\]. Tính giá trị của biểu thức \[P = z.\bar w + \bar z.w\].
Cho a và b là hai số thực dương tùy ý. Mệnh đề nào dưới đây là đúng?
Tập nghiệm của phương trình \[\frac{1}{2}{\log _3}{\left( {x + 2} \right)^2} + \frac{1}{3}{\log _3}{\left( {4x - 1} \right)^3} = 2\] là
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x + 2y - 3z + 3 = 0.\] Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ. Bất phương trình \[f\left( x \right) > {x^3} + 4x + m\] nghiệm đúng với mọi \[x \in \left( {0;2} \right)\] khi và chỉ khi