Cho hình lập phương , gọi I là trung điểm . Mặt phẳng chia khối lập phương thành 2 phần. Tính tỉ số thể tích phần bé chia phần lớn.
A.
B.
C.
D.
Phương pháp giải:
- Xác định thiết diện của thiết của hình lập phương khi cắt bởi .
- Phân chia khối đa diện chứa đỉnh C thành tổng hiểu của các khối đa diện có thể tính thể tích dễ dàng, so sánh thể tích của nó với thể tích khối lập phương. Từ đó suy ra tỉ số thể tích phần bé chia phần lớn.
Giải chi tiết:
Trong gọi , trong gọi .
Khi đó cắt hình lập phương theo thiết diện là tứ giác .
Gọi là thể tích phần khối đa diện bị chia bởi chứa điểm C, khi đó ta có .
Ta có: .
Áp dụng định lí Ta-lét ta có: .
Khi đó ta có: .
.
Áp dụng định lí Ta-lét ta có: .
Khi đó ta có .
Vậy tỉ số thể tích phần bé chia phần lớn là .
Đáp án A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số có đồ thị là parabol như hình vẽ bên. Khẳng định nào sau đây là đúng?
Cho hình chóp có đáy là hình chữ nhật với . Cạnh bên SA vuông góc với đáy. Gọi M,N lần lượt là trung điểm của SB và SD. Tính khoảng cách d từ S đến mặt phẳng .
Tính tổng các giá trị nguyên của tham số m trên để hàm số nghịch biến trên khoảng .
Cho các số thực thỏa mãn . Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của . Tổng bằng:
Trong bốn hàm số được liệt kẻ ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên như sau?
Cho hàm số xác định, liên tục trên đoạn và có đồ thị là đường cong trong hình vẽ bên. Hàm số đạt cực đại tại điểm nào dưới đây?
Cho hình lăng trụ có đáy là tam giác vuông cân tại B và . Hình chiếu vuông góc của trên mặt phẳng là trung điểm H của cạnh AB và . Thể tích của khối lăng trụ đã cho bằng: