Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

18/07/2024 143

Ông X muốn xây một bình chứa hình trụ có thể tích \(72{m^3}.\) Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?

A.\(\frac{{\sqrt 3 }}{{\sqrt[3]{\pi }}}\left( m \right).\)

B.\(\frac{3}{{\sqrt[3]{\pi }}}\left( m \right).\)

Đáp án chính xác

C.\(\frac{2}{{\sqrt[3]{\pi }}}\left( m \right).\)

D. \(\frac{{3\sqrt[3]{3}}}{{2\sqrt[3]{\pi }}}\left( m \right).\)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Gọi bán kính đáy của hình trụ là \(r\left( m \right),\left( {r >0} \right)\) suy ra chiều cao của hình trụ là \(h = \frac{{72}}{{\pi {r^2}}}\left( m \right).\)

Diện tích xung quanh là: \({S_{xq}} = 2\pi rh = \frac{{144}}{r}\left( {{m^2}} \right)\)

Diện tích đáy là: \({S_{day}} = \pi {r^2}\left( {{m^3}} \right)\)

Tổng chi phí để xây là: \(\pi {r^2}.100 + \pi {r^2}.140 + \frac{{144}}{r}.90 = \pi {r^2}.240 + \frac{{12960}}{r}\) (nghìn đồng).

Xét hàm số

\(f\left( r \right) = \pi {r^2}.240 + \frac{{12960}}{r} = \pi {r^2}.240 + \frac{{6480}}{r} + \frac{{6480}}{r} \ge 3\sqrt[3]{{\pi {r^2}.240.\frac{{6480}}{r}.\frac{{6480}}{r}}} = 6480\sqrt[3]{\pi }\)

Hàm số đạt giá trị nhỏ nhất khi \(\pi {r^2}.240 = \frac{{6480}}{r} \Leftrightarrow r = \frac{3}{{\sqrt[3]{\pi }}}.\)

Đáp án B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Gọi \(S\) là tập hợp các giá trị nguyên \(m \in \left[ { - 2021;2021} \right]\) để hàm số \(g\left( x \right) = f\left( {x + m} \right)\) nghịch biến trên khoảng \(\left( {1;2} \right).\) Hỏi \(S\) có bao nhiêu phần tử?

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Gọi \(S\) là tập hợp các giá trị nguyên \(m \in \le (ảnh 1)

Xem đáp án » 08/09/2022 293

Câu 2:

Cho hàm số \(y = {x^4} - 2m{x^2} + m,\) có đồ thị \(\left( C \right)\) với \(m\) là tham số thực. Gọi \(A\) là điểm thuộc đồ thị \(\left( C \right)\) có hoành độ bằng 1. Tìm \(m\) để tiếp tuyến \(\Delta \) với đồ thị \(\left( C \right)\) tại \(A\) cắt đường tròn (γ)(x1)2+(y1)2=4 tạo thành một dây cung có độ dài nhỏ nhất. 

Xem đáp án » 08/09/2022 286

Câu 3:

Cho hình chóp \(S.ABC\) có \(AB = AC = 4,BC = 2,SA = 4\sqrt 3 ;\angle SAB = \angle SAC = {30^0}.\) Gọi \({G_1},{G_2},{G_3}\) lần lượt là trọng tâm của các tam giác \(\Delta SBC;\Delta SCA;\Delta SAB\) và \(T\) đối xứng \(S\) qua mặt phẳng \(\left( {ABC} \right).\) Thể tích của khối chóp \(T.{G_1}{G_2}{G_3}\) bằng \(\frac{a}{b}\) với \(a,b \in \mathbb{N}\) và \(\frac{a}{b}\) tối giản. Tính giá trị \(P = 2a - b.\)  

Xem đáp án » 08/09/2022 215

Câu 4:

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^2} + n + 1\) với \(n \in \mathbb{N}*\). Số 21 là số hạng thứ bao nhiêu của dãy số đã cho?

Xem đáp án » 08/09/2022 211

Câu 5:

Cho tứ diện đều \(ABCD,M\) là trung điểm của \(BC.\) Khi đó cosin của góc giữa hai đường thẳng nào sau đây có giá trị bằng \(\frac{{\sqrt 3 }}{6}?\) 

Xem đáp án » 08/09/2022 206

Câu 6:

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác \(ABC\) vuông tại \(B;AB = 2a,BC = a,AA' = 2a\sqrt 3 .\) Thể tích khối lăng trụ \(ABC.A'B'C'\) là

Xem đáp án » 08/09/2022 204

Câu 7:

Có bao nhiêu giá trị nguyên của tham số \(m\) trong \(\left[ { - 2020;2020} \right]\) để phương trình \(\log \left( {mx} \right) = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?

Xem đáp án » 08/09/2022 200

Câu 8:

Cho hình chóp \(S.ABC\) có cạnh \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right),\) biết \(AB = AC = a,BC = a\sqrt 3 .\) Tính góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right).\)

Xem đáp án » 08/09/2022 200

Câu 9:

Có bao nhiêu cách sắp xếp 8 học sinh thành một hàng dọc?

Xem đáp án » 08/09/2022 198

Câu 10:

Gọi \(M\left( {{x_0};{y_0}} \right)\) là điểm thuộc đồ thị hàm số \(y = {\log _3}x.\) Tìm điều kiện của \({x_0}\) để điểm \(M\) nằm phía trên đường thẳng \(y = 2.\)

Xem đáp án » 08/09/2022 196

Câu 11:

Cho bất phương trình log13(x22x+6)2. Mệnh đề nào sau đây đúng?

Xem đáp án » 08/09/2022 192

Câu 12:

Gọi \(\left( S \right)\) là tập hợp các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tính tổng các phần tử của \(S.\)

Xem đáp án » 08/09/2022 189

Câu 13:

Cho hình trụ có bán kính đáy bằng \(a\) và chiều cao gấp 2 lần đường kính đáy của hình trụ. Tính diện tích xung quanh của hình trụ.

Xem đáp án » 08/09/2022 182

Câu 14:

Cho mặt cầu \(S\left( {O;r} \right)\), mặt phẳng \(\left( P \right)\) cách tâm \(O\) một khoảng bằng \(\frac{r}{2}\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn. Hãy tính theo \(r\) chu vi của đường tròn là giao tuyến của mặt phẳng \(\left( P \right)\) và mặt cầu \(\left( S \right).\) 

Xem đáp án » 08/09/2022 179

Câu 15:

Tính tổng tất cả các nghiệm của phương trình \({5^{{{\sin }^2}x}} + {5^{{{\cos }^2}x}} = 2\sqrt 5 \) trên đoạn \(\left[ {0;2\pi } \right].\) 

Xem đáp án » 08/09/2022 171

Câu hỏi mới nhất

Xem thêm »
Xem thêm »