Cho khối chóp \(ABCD.A'B'C'D'\) có thể tích \(V.\) Gọi \(M,N,P\) lần lượt là trung điểm các cạnh \(AB,B'C'\) và \(C'D',\) điểm \(Q\) thuộc cạnh \(CC'\) sao cho \(CQ = 2QC'.\) Thể tích khối tứ diện \(MNPQ\) bằng
A.\(\frac{1}{4}V.\)
B.\(\frac{{17}}{{12}}V.\)
C.\(\frac{5}{{72}}V.\)
D.\(\frac{7}{{72}}V.\)
Đáp án D.
Gọi \(M'\) là trung điểm của \(A'B'\)
Khi đó: \({V_{MPQN}} = {V_{MQNH}}\)
Ta có: \(KC' = \frac{1}{2}C'M'.C'O = \frac{1}{2}OM'\)
Đặt: \(OM' = x \Rightarrow C'O = \frac{1}{2}x;C'K = \frac{1}{2}\left( {\frac{1}{2}x + x} \right) = \frac{3}{4}x \Rightarrow KO = \frac{7}{4}M'O\)
\({S_{KPN}} = \frac{7}{4}{S_{PMM'}} = \frac{7}{4}.\frac{1}{2}.{S_{A'B'C'D'}} = \frac{7}{8}{S_{A'B'C'D'}}\)
Ta có: \({V_{MPKH}} = \frac{7}{8}.\frac{1}{3}V = \frac{7}{{24}}V;{V_{QPKA}} = \frac{7}{{72}}V \Rightarrow {V_{MPQS}} = \frac{{\frac{7}{{24}} - \frac{7}{{72}}}}{2}V = \frac{7}{{72}}V\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) đồ thị là đường cong trong hình bên. Mệnh đề nào dưới đây đúng?
Cho hai hàm số \(y = {2^x}\) và \(y = {\log _2}x\) lần lượt có đồ thị \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right).\) Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm lần lượt thuộc \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) sao cho tam giác \(IAB\) vuông cân tại \(I,\) trong đó \(I\left( { - 1; - 1} \right).\) Giá trị của \(P = \frac{{{x_A} + {y_A}}}{{{x_B} + {y_B}}}\) bằng
Cho hàm số \[f(x)\] có \[f(0) = 0\]. Biết rằng \[y = f'(x)\] là hàm số bậc ba và có đồ thị là đường cong trong hình dưới đây, hàm số \[g(x) = f(f(x) - x)\] có bao nhiêu điểm cực trị ?
Trong các hàm số dưới đây, hàm số nào nghịch biến trên khoảng \(\mathbb{R}?\)
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số \(m\) để trên đoạn \(\left[ { - 1;2} \right]\) phương trình \(3f\left( {{x^2} - 2x - 1} \right) = m\) có đúng hai nghiệm thực phân biệt?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(3f\left( x \right) + 1 = 0\) là
Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^3} - 36x\) trên đoạn \(\left[ {2;20} \right]\) bằng