Cho phương trình \(\log _2^2x + 2m{\log _2}x + 2m - 2 = 0\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để phương trình đã cho có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} \le 64{x_2} \le 4096{x_1}?\)
A. 3.
B. 5.
C. 4.
D. Vô số.
Đáp án B.
Điều kiện: \(x >0\)
Đặt \(t = {\log _2}x.\) Phương trình trở thành: \({t^2} + 2mt + 2m - 2 = 0\left( * \right).\)
Để phương trình có 2 nghiệm phân biệt \({x_1},{x_2}\) thì (*) có 2 nghiệm phân biệt \({t_1},{t_2}\)
\( \Rightarrow \Delta ' >0 \Leftrightarrow {m^2} - 2m + 2 >0 \Leftrightarrow \forall m \in \mathbb{R}.\) Khi đó: \({t_1} + {t_2} = - 2m,{t_1}{t_2} = 2m - 2.\)
Ta có: \({\log _2}{x_1} = {t_1},{\log _2}{x_2} = {t_2} \Rightarrow \left\{ \begin{array}{l}{x_1} = {2^{{t_1}}}\\{x_2} = {2^{{t_2}}}\end{array} \right..\)
Từ điều kiện
\({x_1} \le 64{x_2} \le 4096{x_1}.\)
\( \Leftrightarrow {2^{{t_1}}} \le {2^6}{.2^{{t_2}}} \le {2^{12}}{.2^{{t_1}}} \Leftrightarrow {2^{{t_1}}} \le {2^{6 + {t_2}}} \le {2^{12 + {t_1}}}\)
\( \Leftrightarrow \left\{ \begin{array}{l}{t_1} - {t_2} \le 6\\{t_1} - {t_2} \ge - 6\end{array} \right. \Leftrightarrow \left| {{t_1} - {t_2}} \right| \le 6\)
\( \Leftrightarrow {\left( {{t_1} + {t_2}} \right)^2} - 4{t_1}{t_2} \le 36 \Leftrightarrow {\left( { - 2m} \right)^2} - 4\left( {2m - 2} \right) \le 36\)
\( \Leftrightarrow {m^2} - 2m - 7 \le 0\)
\( \Leftrightarrow 1 - 2\sqrt 2 \le m \le 1 + 2\sqrt 2 \)
Có 5 giá trị nguyên của \(m \in \left[ {1 - 2\sqrt 2 ;1 + 2\sqrt 2 } \right].\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) đồ thị là đường cong trong hình bên. Mệnh đề nào dưới đây đúng?
Cho hai hàm số \(y = {2^x}\) và \(y = {\log _2}x\) lần lượt có đồ thị \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right).\) Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm lần lượt thuộc \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) sao cho tam giác \(IAB\) vuông cân tại \(I,\) trong đó \(I\left( { - 1; - 1} \right).\) Giá trị của \(P = \frac{{{x_A} + {y_A}}}{{{x_B} + {y_B}}}\) bằng
Cho hàm số \[f(x)\] có \[f(0) = 0\]. Biết rằng \[y = f'(x)\] là hàm số bậc ba và có đồ thị là đường cong trong hình dưới đây, hàm số \[g(x) = f(f(x) - x)\] có bao nhiêu điểm cực trị ?
Trong các hàm số dưới đây, hàm số nào nghịch biến trên khoảng \(\mathbb{R}?\)
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số \(m\) để trên đoạn \(\left[ { - 1;2} \right]\) phương trình \(3f\left( {{x^2} - 2x - 1} \right) = m\) có đúng hai nghiệm thực phân biệt?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(3f\left( x \right) + 1 = 0\) là
Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^3} - 36x\) trên đoạn \(\left[ {2;20} \right]\) bằng