Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(2a,SA\) vuông góc với đáy và \(SA = a.\) Gọi \(I\) là trung điểm của \(AC.\) Khoảng cách từ \(I\) đến mặt phẳng \(\left( {SBC} \right)\) bằng
A.\(\frac{{a\sqrt {15} }}{{10}}.\)
B.\(\frac{{a\sqrt 3 }}{4}.\)
C.\(\frac{{a\sqrt {15} }}{5}.\)
D. \(\frac{{a\sqrt 3 }}{2}.\)
Đáp án A.
Gọi \(M\) là trung điểm của \(BC.\) Suy ra \(AM \bot BC\) và \(AM = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 .\)
Gọi \(K\) là hình chiếu của \(A\) trên \(SM.\) Suy ra \[AK \bot SM\left( 1 \right).\]
Ta có: \(\left\{ \begin{array}{l}AM \bot BC\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right) \Rightarrow BC \bot AK\left( 2 \right).\)
Từ (1) và (2) suy ra \(AK \bot \left( {SBC} \right) \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = AK.\)
Do \(I\) là trung điểm của \(AC\) nên \(d\left( {I,\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {A;\left( {SBC} \right)} \right) = \frac{{AK}}{2}.\)
Trong \(\Delta SAM\) có \(AK = \frac{{SA.AM}}{{\sqrt {S{A^2} + A{M^2}} }} = \frac{{a.a\sqrt 3 }}{{\sqrt {{a^2} + 3{a^2}} }} = \frac{{a\sqrt 3 }}{2}\)
Vậy \(d\left( {I,\left( {SBC} \right)} \right) = \frac{{a\sqrt 3 }}{4}.\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) đồ thị là đường cong trong hình bên. Mệnh đề nào dưới đây đúng?
Cho hai hàm số \(y = {2^x}\) và \(y = {\log _2}x\) lần lượt có đồ thị \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right).\) Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm lần lượt thuộc \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) sao cho tam giác \(IAB\) vuông cân tại \(I,\) trong đó \(I\left( { - 1; - 1} \right).\) Giá trị của \(P = \frac{{{x_A} + {y_A}}}{{{x_B} + {y_B}}}\) bằng
Cho hàm số \[f(x)\] có \[f(0) = 0\]. Biết rằng \[y = f'(x)\] là hàm số bậc ba và có đồ thị là đường cong trong hình dưới đây, hàm số \[g(x) = f(f(x) - x)\] có bao nhiêu điểm cực trị ?
Trong các hàm số dưới đây, hàm số nào nghịch biến trên khoảng \(\mathbb{R}?\)
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số \(m\) để trên đoạn \(\left[ { - 1;2} \right]\) phương trình \(3f\left( {{x^2} - 2x - 1} \right) = m\) có đúng hai nghiệm thực phân biệt?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(3f\left( x \right) + 1 = 0\) là
Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^3} - 36x\) trên đoạn \(\left[ {2;20} \right]\) bằng
Biết rằng giá trị lớn nhất của hàm số \(y = \frac{{\cos x + m}}{{2 - \cos x}}\) trên đoạn \(\left[ { - \frac{\pi }{3};\frac{\pi }{2}} \right]\) bằng 1. Mệnh đề nào sau đây đúng?