Cho hàm số bậc ba y = f(x) có đồ thị của hàm số f'(x) như hình vẽ và f(b) = 1. Số giá trị nguyên của để hàm số có đúng 5 điểm cực trị là:
Phương pháp:
Lập bảng biến thiên của hàm số y = f(x) và y = g(x).
Cách giải:
Dựa vào đồ thị hàm số ta có bảng biến thiên của y = f(x) như sau:
Đặt ta có:
Hàm số y = h(x) có 3 điểm cực trị Hàm số y = h(x) + m cũng có 3 điểm cực trị.
Vì số điểm cực trị của hàm số bằng tổng số điểm cực trị của hàm số y = h(x) + m và số giao điểm của đồ thị hàm số y = h(x) + m với trục hoành (không tính tiếp xúc).
Nên để hàm số có 5 điểm cực trị thì phương trình h(x) = 0 có 2 nghiệm phân biệt (không tính nghiệm kép).
Bảng biến thiên hàm số h(x) như sau:
với
Nếu h(c) > 5 thì phương trình h(x) = -m có 2 nghiệm phân biệt (không tính nghiệm kép)
(không thỏa mãn ).
Nếu thì phương trình h(x) = -m có 2 nghiệm phân biệt (không tính nghiệm kép)
(thỏa mãn ).
Mà
Vậy có 10 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Chọn A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Hàm số y = f(x) liên tục trên [2; 9]. F(x) là một nguyên hàm của hàm số f(x) trên [2; 9] và Mệnh đề nào sau đây đúng?
Cho tứ diện ABCD có cạnh AB, AC và AD đôi một vuông góc với nhau; AB = 6, AC = 7, AD = 4. Gọi M, N, P tương ứng là trung điểm các cạnh . Tính thể tích V của khối tứ diện ABCD.
Tìm tất cả các giá trị thực của tham số m để hàm số đồng biến trên khoảng
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm của phương trình f(x) + 3 = 0 là:
Cho hàm số y = f(x) có đạo hàm . Số điểm cực tiểu của hàm số đã cho là
Cho khối lăng trụ ABC.A'B'C'. Gọi E là trọng tâm tam giác A'B'C' và F là trung điểm BC. Gọi là thể tích khối chóp B'.EAF và là thể tích khối lăng trụ ABC.A'B'C'. Khi đó có giá trị bằng
Cho hình hình hộp chữ nhật ABCD.A'B'C'D' có và AD = a. Góc giữa hai đường thẳng B'D' và AC bằng