Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh Cạnh bên SA vuông góc với đáy và SA = 3. Mặt phẳng qua A và vuông góc với SC cắt SB, SC, SD lần lượt tại M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP.
A.
B.
C.
D.
Gọi O là tâm hình vuông ABCD.
Dễ dàng chứng minh được các tam giác là các tam giác vuông có cạnh huyền AC nên O chính là tâm mặt cầu ngoại tiếp tứ diện CMNP. Mặt cầu có đường kính AC nên Thể tích khối cầu:
Chọn B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y = f(x) là hàm đa thức bậc ba có đồ thị như hình vẽ bên dưới. Khẳng định nào sau đây là sai?
Cho hàm số với m là tham số thực. Tìm tất cả các giá trị của để hàm số có giá trị nhỏ nhất trên đoạn [0; 2] bằng 7.
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc và Thể tích của khối tứ diện đó là
Cho y = f(x) là hàm đa thức bậc 4 và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-12; 12] để hàm số có 5 điểm cực trị?
Điều kiện cần và đủ để hàm số có hai điểm cực đại và một điểm cực tiểu là
Hình nón có đường sinh l = 2a và hợp với đáy góc Diện tích toàn phần của hình nón bằng
Trong không gian Oxyz, cho điểm A(1; 2; 3) và B(3; 4; 7). Phương trình mặt trung trực của đoạn thẳng AB là
Xếp ngẫu nhiên 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C vào sáu ghế quanh một bàn tròn (mỗi học sinh ngồi đúng một ghế). Tính xác suất để học sinh lớp C ngồi giữa 2 học sinh lớp B