Cho y = f(x) là hàm đa thức bậc 3 và có đồ thị như hình vẽ dưới. Hỏi phương trình có bao nhiêu nghiệm thuộc đoạn
Từ đồ thị của y = f(x) gọi a < b < c lần lượt là các hoành độ giao điểm của f(x) và trục hoành. Khi đó:
Cũng từ đồ thị của y = f(x) và chú ý ta thấy:
- Đường thẳng y = a + 1 cắt đồ thị y = f(x) tại 3 điểm phân biệt nhưng chỉ có một điểm có hoành độ là , suy ra Mà trong đoạn phương trình có 3 nghiệm.
- Đường thẳng y = b + 1 cắt đồ thị y = f(x) tại 3 điểm phân biệt nhưng chỉ có một điểm có hoành độ là suy ra Mà trong đoạn phương trình có 3 nghiệm.
- Đường thẳng cắt đồ thị y = (x) tại 1 điểm duy nhất và có hoành độ , suy ra vô nghiệm.
Vậy phương trình có 6 nghiệm trong đoạn
Chọn A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y = f(x) là hàm đa thức bậc ba có đồ thị như hình vẽ bên dưới. Khẳng định nào sau đây là sai?
Cho hàm số với m là tham số thực. Tìm tất cả các giá trị của để hàm số có giá trị nhỏ nhất trên đoạn [0; 2] bằng 7.
Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc và Thể tích của khối tứ diện đó là
Cho y = f(x) là hàm đa thức bậc 4 và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-12; 12] để hàm số có 5 điểm cực trị?
Điều kiện cần và đủ để hàm số có hai điểm cực đại và một điểm cực tiểu là
Hình nón có đường sinh l = 2a và hợp với đáy góc Diện tích toàn phần của hình nón bằng
Trong không gian Oxyz, cho điểm A(1; 2; 3) và B(3; 4; 7). Phương trình mặt trung trực của đoạn thẳng AB là
Xếp ngẫu nhiên 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C vào sáu ghế quanh một bàn tròn (mỗi học sinh ngồi đúng một ghế). Tính xác suất để học sinh lớp C ngồi giữa 2 học sinh lớp B